Расчет параметров различных видов сигналов

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Информатика, ВТ, телекоммуникации
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    81,15 Кб
  • Опубликовано:
    2013-02-07
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Расчет параметров различных видов сигналов

Реферат


Курсовая работа содержит расчет спектра и энергетических характеристик сигнала, определение интервалов дискретизации и квантования сигнала, расчет разрядности кода, исследование характеристик кодового сигнала, исследование характеристик модулированного сигнала, расчет вероятности ошибки в канале с помехами.

Введение

В последнее десятилетие ХХ века произошла научно-техническая революция в области транспортной связи, в основе которой лежат два крупных достижения науки середины нашего столетия: общая теория связи и микроэлектронная элементная база.

На железнодорожном транспорте активно внедряются спутниковые, волоконно-оптические линии связи, системы с шумоподобными сигналами, подвижной радиосвязи: сотовая, транкинговая и др. Доступ подвижного объекта к стационарным сетям связи осуществляется с помощью радио. Произошло объединение в разумном сочетании проводной и радиосвязи, широко- и узкополосных аналоговых и цифровых систем связи.

По прогнозам международных экспертов, ХХI век должен стать веком глобального информационного обеспечения. Его основой будет информационная инфраструктура, а составляющими ¾ мощные транспортные сети связи и распределённые сети доступа, предоставляющие услуги пользователям. Основные тенденции развития связи ¾ цифровизация, интеграция сетей, коммутационного и оконечного оборудования, что позволяет значительно повысить эффективность связевого ресурса.

Системы связи, обеспечивающие передачу информации на железнодорожном транспорте, работают в условиях сильных и разнообразных помех. Поэтому системы связи должны обладать высокой помехоустойчивостью, что имеет большое значение для безопасности движения поездов. Системы связи должны обеспечивать высокую эффективность при относительной простоте технической реализации и обслуживания. Это значит, что необходимо передавать наибольшее или заданное количество информации наиболее экономичным способом в заданное время. Последнее достигается благодаря использованию наиболее современных способов передачи (кодирования и модуляции) и приёма.

Решение задач данного курсового проекта напрямую связано с задачами, обозначенными выше. В частности, расчёт характеристик сигнала и канала связи ¾ основа проектирования любой системы связи. Цель выполнения данного проекта и состоит в закладке основных знаний по расчёту трактов передачи сигнала.

Структура цифрового канала в общем случае приведена ниже.

Рис. 1 Цифровой канал связи


S(t) - передаваемый сигнал;

- дискретизатор сигнала по времени;

- квантователь по уровню;

- кодер источника;

- кодер канала;

- модулятор;

- демодулятор;

- декодер канала;

- декодер источника;

- интерполятор;

S`(t) - получаемый сигнал.

1. Расчёт характеристик сигналов

.1 Расчет характеристик колоколообразного сигнала

.1.1 Расчет спектра колоколообразного сигнала

Временная функция сигнала имеет вид:

.                                                                                   (1.1)

По заданию, у данного сигнала , график этого сигнала изображен на рис. 1.1.


Прямое преобразование Фурье для этой функции имеет вид

 .                                                           (1.2)

График амплитудного спектра U(w) изображен на рис. 1.2.


1.1.2 Расчет полной энергии и ограничение практической ширины спектра колоколообразного сигнала

Полная энергия колоколообразного сигнала в общем случае рассчитывается по формуле:

.                                                                                  (1.3) 

Путем подбора, согласно рекомендациям [2], выбираем пределы интегрирования: tв = 0.0009 с, tн= - 0.0009 с.

Для колоколообразного сигнала имеем:

Ограничение практической ширины спектра сигнала по верхнему значению частоты wс, с учетом заданного энергетического критерия d осуществляется на основе неравенства:

,                                                                                        (1.4)

.                                                             (1.5)

wc - искомое значение верхней граничной частоты сигнала.

В одной системе координат построим график W`, прямые полной энергии W=1.566×10-6 Дж и части полной энергии W``=d×W=1.533×10-6 Дж. Находим значение wс по графику, изображенному на рис. 1.3. Точка пересечения W` и W`` соответствует значению wс.

wс=4600 рад/с.

1.2 Расчет характеристик экспоненциального сигнала

.2.1 Расчет спектра экспоненциального сигнала

Аналитическая запись сигнала имеет вид:

.                                                                                  (1.6)

Заданный сигнал имеет коэффициенты , его график изображен на рис 1.4.


Прямое преобразование Фурье для этой функции имеет вид:

.                                                                              (1.7)

с учетом указанных констант получаем:

.                                                                         (1.8)

График амплитудного спектра U(w) изображен на рис. 1.5.


1.2.2 Расчет полной энергии и ограничение практической ширины спектра экспоненциального сигнала

Полную энергию данного сигнала можно рассчитать по (1.3), применением табличного интеграла, согласно которому:

         

Ограничение практической ширины спектра сигнала по верхнему значению частоты wс, по заданному энергетическому критерию d осуществляется на основе (1.4). Для определения граничной частоты в одной системе координат построим график W`, прямые полной энергии W=6.4×10-6 Дж и части полной энергии W``=d×W=6.2656×10-6 Дж. Находим значение wс по графику, изображенному на рис. 1.6. Точка пересечения W` и W`` соответствует значению wс.

wс=2574 рад/с.


1.3 Расчет характеристик осциллирующего сигнала

.3.1 Расчет спектра осциллирующего сигнала

Временная функция сигнала имеет вид:

.                                                    (1.9)

У заданного сигнала , график этого сигнала изображен на рис. 1.7.

Прямое преобразование Фурье для этой функции имеет вид

учетом коэффициентов получаем:

 В/Гц. (1.11)

График амплитудного спектра U(w) изображен на рис. 1.8.

Спектр фаз можно определить применив функцию arg(х), получаем:

.                      (1.12)

График спектра фаз функции изображен на рис. 1.9.



1.3.2 Расчет полной энергии и ограничение практической ширины спектра осциллирующего сигнала

Полная энергия сигнала (1.9) в общем случае рассчитывается по (1.3). Применив табличный интеграл, имеем:

Ограничение практической ширины спектра сигнала по верхнему значению частоты wс осуществляется так же, как и для предыдущих сигналов.

Для определения граничной частоты в одной системе координат построим график W`, прямые полной энергии W=3.564318×10-6 Дж и части полной энергии W``=d×W=3.489467×10-6 Дж. Находим значение wс по графику, изображенному на рис. 1.10. Точка пересечения W` и W`` соответствует значению wс.

wс=6.1×104 рад/с.


В данном разделе определены энергии трех сигналов и с учетом коэффициента d, определяющего процент полной энергии, проведен расчет граничной частоты, на основании чего можно выбрать для последующих расчетов экспоненциальный сигнал, т.к. у данного сигнала самый узкий спектр и к каналу, по которому будет передаваться этот сигнал, предъявляются менее жесткие требования.

2. Определение интервала дискретизации и разрядности кода

.1 Расчёт параметров АЦП и цифрового сигнала

Основные характеристики АЦП - частота запуска и разрядность выходного кода. Их и надо определить по спектру сигнала и по шумам квантования.

Интервал дискретизации Dt по времени определяем на основе теоремы Котельникова по неравенству:

Dt £ 1/(2×Fв),                                                                                    (2.1)

где Fв=wс/(2×p) - верхнее значение частоты спектра сигнала.

Dt=p/2574=1.22×10-3 с.

Частота запуска АЦП рассчитывается по формуле:

; (2.2)

Fд=1/Dt=1/1.22×10-3 =819 Гц.

Необходимо, чтобы сигнал был представлен не менее чем четырьмя отсчетами. Для выполнения этого условия уменьшим интервал Dt:

Dt=0.0006 с, частота запуска АЦП Fд=1/Dt=1/0.0006 =1666.7 Гц.

График дискретизированного по времени сигнала изображен на рис. 2.1.

Следующими этапами преобразования сигнала являются квантование импульсных отсчетов по уровню и кодирование. Разрядность кодов определяется исходя из динамического диапазона квантуемых по уровню импульсных отсчетов. При этом в качестве верхней границы динамического Umax принимается напряжение самого большого по амплитуде отсчёта. Нижняя граница диапазона равна минимальному значению сигнала, либо определяется по формуле:

, (2.3)

где К ¾ коэффициент, приведённый в задании на курсовую работу.


Вычислим  по (2.3).

min=0,08/28=0.002857 В.

Найдём число уровней квантования по формуле:

, (2.4)

где g ¾ отношение мгновенной мощности сигнала к мощности шума квантования (приводится в задании).

.

Известно, что при использовании двоичного кодирования число кодовых комбинаций, равное числу уровней квантования, определяется выражением:

, (2.5)

где m ¾ разрядность кодовых комбинаций.

Откуда

. (2.6)

Подставив значение nкв получим:

 бит.

цифровой сигнал колоколообразный экспоненциальный

Длительность элементарного кодового импульса tи определяется исходя из интервала дискретизации Dt и разрядности кода m. Здесь необходимо ввести защитный интервал, под который отведем половину Dt. В итоге получим выражение:

; (2.7)

tи = 0.0006 /12 =50 мкс.

На основании полученного значения разрядности кода и интервала дискретизации выберем АЦП. Полученным значениям удовлетворяет микросхема К1107ПВ1. Характеристики микросхемы приведены в табл. 2.1.

Таблица 2.1 Технические характеристики АЦП

Серия

Разрядность выхода

Тип логики

Уровень 1, В

Уровень. 0, В

Fт, tпреобраз.

К1107ПВ1

6

ТТЛ

³ 2.4

£ 0.4

6.5 МГц


2.2 Разработка математической модели цифрового сигнала

Для разработки математической модели цифрового сигнала примем четыре кодовых слова (коды четырех отсчетов).

Числовые константы сигнала определяются по формулам (2.8) и (2.9). Математическое ожидание:

. (2.8)

Дисперсия:

 . (2.9)




Вероятность нуля:


Вероятность единицы:


Рассчитаем математическое ожидание сигнала по (2.8).

В.

Рассчитаем дисперсию:

 В.

Рассчитаем функцию автокорреляции. При проведении расчетов воспользуемся возможностями программы MathCAD. Поступим следующим образом. Выпишем четыре последовательности кодов, которыми представляется дискретизированный сигнал; это будет последовательность нулей и единиц.

В среде MathCAD. создадим два вектора  и . Далее воспользуемся функцией . После каждого измерения будем сдвигать кодовую последовательность вектора Vy на один знак. Проведём семь расчётов. Результаты занесём в табл. 2.2.

Таблица 2.2 Функция автокорреляции кодового сигнала

t, мкс

0

50

100

150

200

250

300

350

Corr

1

-0.066667

-0.066667

-0.244444

-0.244444

0.111111

-0.244444

0.288889


В среде MathCAD по этой таблице сформируем два вектора Vt и Vk:


С помощью функции cspline(Vt, Vk) вычислим вектор VS вторых производных при приближении к кубическому полиному:

VS : = cspline (Vt, Vk)                     

Далее вычисляем функцию, аппроксимирующую функцию автокорреляции сплайн кубическим полиномом:

 

kor(t) : = interp (VS, Vt, Vk, t).

График функции автокорреляции изображен на рис. 2.2.


Спектральные характеристики кодированного сигнала находятся на основании интегрального преобразования Винера-Хинчина. В области действительной переменной оно имеет следующий вид:

 

. (2.10)

Здесь K(t) выше рассчитанная нормированная функция kor(t), верхний предел T - последнее рассчитанное значение t.

Решение интеграла произведём в среде MathCAD.

Спектр кодированного сигнала, построенный по (2.10) показан на рис. 2.3.

3. Характеристики модулированных сигналов

Для передачи полезной информации в технике связи обычно используются модулированные сигналы. Они позволяют решить задачи уплотнения линий связи, электромагнитной совместимости, помехоустойчивости систем. Процесс модуляции является нелинейной операцией и приводит к преобразованию спектра канала. При гармоническом сигнале-переносчике это преобразование заключается в том, что спектр полезного сигнала переносится в область несущей частоты в виде двух боковых полос. Если переносчик - импульсная последовательность, то такие боковые полосы расположены в окрестностях каждой гармоники переносчика. Значит, продукты модуляция зависят от полезного сигнала и от вида сигнала-переносчика.

На рис. 3.1. показан частотно-модулированный сигнал.

 

Частотно-модулированный сигнал


Для определения спектра ЧМ- сигнала воспользуемся линейностью преобразования Фурье. Сигнал представлен в виде суммы двух АМ- колебаний с различными частотами несущих f1 и f2,

.                                         (3.1)

К каждому такому сигналу применим преобразование Фурье и результирующий спектр определится как сумма спектров S1(jw) и S2(jw):

                               (3.2)

                             (3.3)

где                                                                            (3.4)

                                                                          (3.5)

                                                                           (3.6)

;                                                                       (3.7)

В - амплитуда логической единицы;

n - номер гармоники.

Для того, чтобы наглядно показать полосы частот спектра с учетом того, что сдвига фаз нет, запишем (3.1) в упрощенном виде:

     (3.8)

По заданию несущие частоты равны:

     =8.796459×106 рад/с, =1.947787×107 рад/с.

Определяем по формуле (3.4):

.                          

Для практического использования спектр необходимо ограничить полосой . Ограничение проведем по пяти крайним боковым составляющим. Расчёт полосы частот спектра проведём по формуле:

. (3.9)

где n ¾ количество боковых составляющих.

.

Итоговый спектр ЧМ содержит несущие w1, w2 в окрестностях каждой из которых расположены боковые полосы, состоящие из комбинаций частот  и . Анализируя правую часть выражения (3.8), определяем полосы частот сигнала, которые приведены в табл. 3.1.

Определим амплитуды гармоник по (3.7):

 В;             

 В;             

 В.

Таблица 3.1 Полосы частот гармоник сигнала.

Частоты гармоник, Номера гармоник


8.7336271×1068.60796345×1068.48229975×106




8.85929085×1068.98495455×1069.11061825×106




19.41503815×10619.28937445×10619.16371075×106




19.54070185×10619.66636555×10619.79202925×106




Амплитуды гармоник, В




An

0.05093

0.016977

0.010186


На основании полученных данных можно изобразить спектр модулированного сигнала (рис. 3.1).

4. Согласование источника информации с каналом связи

.1 Источник информации

Выборки передаваемого сигнала ¾ это алфавит источника информации и вероятности букв этого алфавита равны друг другу. Такой источник имеет ряд информационных характеристик: количество информации в знаке, энтропию, производительность, избыточность. В дальнейшем нас будет интересовать производительность, которая характеризует скорость работы источника и определяется по следующей формуле:

, (4.1)

где     ¾ энтропия алфавита источника;

 ¾ среднее время генерации одного знака алфавита.

Для введённого источника энтропия определяется при условии равенства вероятностей знаков алфавита, а среднее время равно интервалу между выборками.

Подставим значения в (4.1).

.

4.2 Согласование источника с каналом

Рассмотрим принципы и предельные возможности непосредственного согласования дискретного источника сообщений с непрерывным каналом связи. Напомним, что в непрерывном канале надо знать плотности распределения случайных процессов сигналов, помех и их же условные плотности распределения. Это понятие вводится при моделировании канала связи и с точки зрения передачи сообщений нет большого противоречия в том, что источник принят дискретным, а канал непрерывный.

Будем считать канал гауссовым, то есть все статистики в нем имеют нормальное распределение. На входе канала, помимо сигнала, присутствует помеха типа «белый шум».

Предельные возможности согласования дискретного источника с непрерывным каналом определяются теоремой Шеннона (которая аналогична такой же дискретного источника и дискретного канала).

Пропускная способность гауссова канала равна:

, (4.2)

где FД - частота дискретизации, определенная выше. Рп ¾ мощность помехи, определяется по заданной спектральной плотности мощности N0 (дано в задании на курсовой проект) и полосе частот модулированного сигнала :

. (4.3)

По этим формулам, пользуясь неравенством Шеннона , примем  и определим РС, обеспечивающую передачу по канал.

Выделим из (4.2) Рс.

, Вт. (4.4)

5. Расчёт вероятности ошибки в канале с аддитивным белым шумом

.1 Общие сведения о вероятности ошибки

Вероятность ошибки P0 зависит от мощности (или энергии) сигнала и мощности помех (в данном случае белого шума). Известную роль играет здесь и вид сигнала, который определяет статистическую связь между сигналами в системе.     Расчёт вероятности ошибки, прежде всего, необходим при оптимальной схеме приёмника, т.е. наилучшей в смысле заданного критерия. В технике связи критерием является критерий Котельникова (оптимального наблюдателя). Согласно его требованиям полная вероятность ошибки должна быть минимальной.

Для реализации такого критерия служит оптимальная решающая схема. При равновероятных и взаимонезависимых сигналах решающая схема поэлементного приёма принимает решение независимо от решения относительно других символов и имеет вид:

 (5.1)

Символ Si над неравенством указывает на то, что решение принимается в пользу сигнала Si. Из второй общей формулы можно получить простые записи с оговоркой тех или иных условий. Будем считать, что отсчёт времени начинается с началом k-го элемента сигнала, что C(t)=mS(t) - приходящий полезный сигнал, и тогда условие правильной регистрации сигнала Si(t) имеет вид:

. (5.2)

 

где Ei, Ej - энергии i-, j-й реализации сигнала.

Реализовать данное неравенство можно двумя способами.

Первая оптимальная решающая схема получила название корреляционного приёмника. При условии равенства энергий Ei и Ej (такой случай будет, в частности, в двоичном канале с ЧМ и ФМ) и двух сигналах S1, S2:

. (5.3)

Структурная схема оптимального приёмника сигнала с ЧМ приведена ниже.

Рис. 5.1 Схема оптимального приёмника

 

В оптимальном приёмнике, показанном на рис. 5.1, на основании сравнения функций взаимной корреляции принимается решение о наличии сигнала S1 или S0.

5.2 Определение вероятности ошибки

В общем случае вероятность ошибки:

, (5.4)

гдe  ¾ функция Лапласа;

 - энергия разностного сигнала;

;       

0 - односторонняя плотность мощности белого шума;

m - характеризует ослабление передаваемых сигналов S1(t) и S2(t).

Формула для расчёта P0 может быть существенно упрощена для конкретного вида сигналов. Для сигнала с частотной модуляцией:

, (5.5)

где .

Дж.

Рассчитаем вероятность ошибки.

В программе MathCAD функция Лапласа эквивалентна функции erf(x). Вычислим данную функцию:

.


.

Из проделанных расчетов можно сделать вывод, что принятая приемником информация полностью соответствует переданной.

Заключение

В ходе работы был произведен расчет спектра различных сигналов и их энергетических характеристик, была вычислена практическая ширина спектра каждого сигнала и выбран сигнал с наименьшей шириной спектра. Рассчитана разрядность кода, которым может быть представлен сигнал. Рассчитаны спектральные характеристики кодового сигнала и фазомодулированного сигнала. Рассчитана вероятность ошибки при приеме сообщения при воздействии белого шума.

Список использованных источников

1. Гоноровский И. С. Радиотехнические цепи и сигналы. М.: Радио и связь, 1986. - 512 с.

2. Баженов Н. Н. Характеристики сигналов в каналах связи: методические указания к курсовому проекту по дисциплине "Теория передачи сигнала". Омск, 2001.

3. Баженов Н. Н., Картавцев А. С. Расчет характеристик сигналов и каналов связи: Методические указания к курсовой работе по дисциплине "Теоретические основы транспортной связи" / Омский ин-т инж. ж.-д. транспорта. - Омск, 1990.-24 с.

Похожие работы на - Расчет параметров различных видов сигналов

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!