Разработка системы контроля движения

  • Вид работы:
    Дипломная (ВКР)
  • Предмет:
    Информатика, ВТ, телекоммуникации
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    91,35 Кб
  • Опубликовано:
    2015-06-16
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Разработка системы контроля движения

Введение

пользователь связь глоснасс

По результатам опроса специалистов, падения являются одним из наиболее серьезных рисков для здоровья пожилых людей, затрагивая большее число людей, чем инсульт и инфаркт, вместе взятые.

Особенно это касается:

·        пожилых людей, живущих отдельно

·        людей, имеющих ограниченную подвижность (инвалиды, нарушения в опорно-двигательном аппарате, атеросклероз, остеопороз и т.д.)

·        людей с нарушениями памяти

·        людей с расстройствами нервной системы (эпилептики, болезнь Паркинсона, церебральный паралич)

·        людей с нарушениями зрения

·        больных, соблюдающих медицинский режим (после инсульта, инфаркта, проходящих лечение в реабилитационных центрах и т.д.)

·        людей с сердечно - сосудистыми заболеваниями (гипертония, гипотония и т.д.)

·        страдающих сахарным диабетом

·        людей, работающих на опасных работах (электрики, профессии связанные с работой на высоте, удаленных от социума, охрана)

Падение может быть опасно для человека вдвойне. Помимо травм от самого падения, ситуация может усугубиться из-за осложнений, если медицинская помощь не оказана своевременно. Статистика демонстрирует, что большинство серьезных осложнений не являются прямым следствием падения, а связаны с задержкой в помощи и лечении.

Падения - в случае неоказания своевременной помощи - являются основной причиной смертности в результате травм среди вышеперечисленных категорий людей

Поэтому актуальна задача обнаружения падения и оповещения о нем. Решить эту задачу можно с помощью акселерометров, объединенных в систему c микроконтроллерами, обрабатывающими полученную от акселерометров информацию и передающему затем с помощью GPS сигнал тревоги и точном местонахождении, близким родственникам.

Цель задачи: разработка устройства контроля движение и определения момента падения пациентов.


. Аналитический обзор существующих устройств

.1 Акселерометры

Акселерометр - прибор, измеряющий проекцию кажущегося ускорения (разности между истинным ускорением объекта и гравитационным ускорением). Акселерометр представляет собой чувствительную массу, закреплённую в упругом подвесе. Отклонение массы от её первоначального положения при наличии кажущегося ускорения несёт информацию о величине этого ускорения.

Некоторые акселерометры еще имеют интегрированные системы сбора и обработки данных. Это позволяет создавать завершённые системы для измерения ускорения и вибрации со всеми необходимыми элементами.

Основными параметрами акселерометра считаются:

·        Масштабный коэффициент - коэффициент пропорциональности между измеряемым кажущимся ускорением и выходным сигналом (электрическим сигналом, частотой колебаний (для струнного акселерометра) или цифровым кодом).

·        Пороговая чувствительность (разрешение) - величина минимального изменения кажущегося ускорения, которое способен определить прибор.

·        Смещение нулевой отметки - показания прибора при нулевом кажущемся ускорении.

·        Случайное блуждание - среднеквадратичное отклонение от смещения нуля.

·        Нелинейность - изменения зависимости между выходным сигналом и кажущимся ускорением при изменении кажущегося ускорения. [1]

Виды акселерометров

Пьезоэлектрические акселерометры

Считается многоцелевым вибродатчиком, в настоящий используемым практически почти во всех областях измерения и анализа механических колебаний. Эксплуатационная характеристика пьезоэлектрических акселерометров в общем лучше характеристики любого другого вибродатчика. Пьезоэлектрические акселерометры различными широкими рабочими частотным и динамическим диапазонами, линейными характеристиками в этих широких диапазонах, прочной конструкцией, надежностью и долговременной стабильностью его характеристик.

Так как пьезоэлектрические акселерометры считаются активными датчиками, генерирующими пропорциональный механическим колебаниям электрический сигнал, при их эксплуатации не нужен источник питания. Отсутствие движущихся элементов конструкции исключает возможность износа и гарантирует исключительную долговечность пьезоэлектрических акселерометров. Отметим, что отдаваемый акселерометром сигнал, пропорциональный ускорению, можно интегрировать с целью измерения и анализа скорости и смещения механических колебаний.

Главным составляющим пьезоэлектрического акселерометра считается диск из пьезоэлектрического материала, в качестве которого хорошо используется искусственно поляризованная ферроэлектрическая керамика. Подвергаемый действию силы (при растяжении, сжатии или же сдвиге) пьезоэлектрический материал генерирует на собственных поверхностях, к которым прикреплены электроды, электрический заряд, пропорциональный воздействующей силе.

Конструкция пьезоэлектрических акселерометров

Пьезоэлемент практических пьезоэлектрических акселерометров сконструирован так, что при возбуждении механическими колебаниями предусмотренная в корпусе акселерометра масса воздействует на него силой, пропорциональной ускорению механических колебаний. Это соответствует закону, согласно которому сила равна произведению массы и ускорения (рис. 1.1).

Рис. 1.1. Конструкция пьезоэлектрических акселерометров

На частотах значительно наименьших резонансной частоты совместной системы масса - пружина ускорение массы акселерометра идентично ускорению его основания и, от сюда следует, что отдаваемый акселерометром электрический сигнал пропорционален ускорению воздействующих на него механических колебаний.

Основные варианты конструкции пьезоэлектрических акселерометров:

§  Вариант сжатия, в котором масса воздействует силой сжатия на пьезоэлектрический элемент;

§  Вариант сдвига, характерным для которого является работа пьезоэлемента под действием срезывающего усилия, обусловленного внутренней массой акселерометра.

Пьезоэлектрические акселерометры с интегральными предусилителями, которые выдают в линии питания выходной сигнал в виде модуляции напряжения. IEPE-акселерометры специально предусмотрены для измерения вибраций в небольших структурах (например, малогабаритных). Их высочайшая выходная чувствительность, высочайщее отношение сигнал/шум и широкая полоса пропускания дают возможность применить их и как прибора общего назначения, и для измерения высокочастотных вибраций. Эти дешевые и легкие акселерометры считаются инструментами с довольно хорошими рабочими характеристиками, имеющими наиболее высокую выходную чувствительность, чем стандартные пьезоэлектрические акселерометры (без интегральных предусилителей). Они герметизированы для защиты от загрязнений окружающей вокруг среды, имеют невысокую восприимчивость к электромагнитному излучению на радиочастотах и невысокое выходное абсолютное сопротивление благодаря наружному источнику постоянного тока. Низко импедансный выход разрешает применить дешевые коаксиальные кабели. IEPE-акселерометры считаются недемпфированными высокочастотными акселерометрами. При измерениях следует принимать меры, чтобы избежать «звона» акселерометра и появлений критерий перегрузки.

Пьезорезистивные акселерометры

Датчики деформации пьезорезистивных акселерометров изменяют электрическое сопротивление пропорционально приложенному механическому напряжению. Целый датчик акселерометра хранит в себе встроенные механические ограничители и обладает довольно высокой прочностью при очень высоком соотношении сигнал/шум. Акселерометры этого типа безупречно подходят для измерения перемещения, низкочастотной вибрации и ударного воздействия и предусмотрены для тестирования на столкновение с препятствием, на флаттер, а еще и для биодинамических измерений и аналогичных приложений, требующих небольшой нагрузки массы и широкой частотной характеристики. Их возможно также применить для ударных испытаний легких систем или конструкций.

Имея частотную характеристику, которая распростроняется до постоянного тока, т.е. до установившегося ускорения, эти акселерометры безупречно подходят для измерений длительных переходных процессов, а еще и кратковременных ударных воздействий. Во множествах случаях чувствительность как оказалась достаточно высокой и усиления выходного сигнала не требуется.

Рис. 1.2. строение пьезорезистивных акселерометров

Пьезорезистивные акселерометры имеют малое демпфирование, в следствии этого, не создают фазового сдвига на низких частотах.

Впрочем им присущи сложности при измерениях на низких частотах, и для преодоления этих дефектов требуется принимать специальные меры. [6]

Акселерометры переменной емкости

В акселерометрах переменной емкости уникальный микродатчик переменной емкости создает емкостное прибор с параллельным расположением пластин. В этоге получается датчик с реакцией на входные ускорения постоянного тока, со стабильной характеристикой демпфирования, которая максимизирует частотную характеристику, и с необходимой прочностью, чтобы противостоять очень высоким ударным и ускорительным нагрузкам. Эти low-g акселерометры безупречно подходят для измерения движения и низкочастотных вибраций и предназначены для как мониторинга траектории.

Газовое демпфирование и интегрированые ограничители на выход за пределы диапазона дают возможность микродатчикам акселерометра противостоять ударным и ускорительным нагрузкам, присущим обычно всем high-g - приложениям.

Интегральные акселерометры

Акселерометры представляют собой датчики линейного ускорения и в данном качестве широко применяются для измерения углов наклона тел, сил инерции, ударных нагрузок и вибрации. Они находят общирное применения в транспорте, в медицине, в промышленных системах измерения и управления, в инерциальных системах навигации. Промышленность изготавливает много разновидностей акселерометров, имеющих различные принципы действия, диапазоны измерения ускорений, массу, габариты и цены.

Современные технологии микрообработки дают возможность изготовить интегральные акселерометры, имеющие малые габариты и невысокую цену. В данное время изготавливаются ИМС акселерометров трех типов: пьезопленочные, объемные и поверхностные.

Пленочные пьезоэлектрические акселерометры

Пленочные пьезоэлектрические датчики ускорения производятся на основе мульслойной пьезоэлектрической полимерной пленки. Многослойная пленка зафиксирована на подложке из окиси алюминия, и к ней присоединена инерционная масса из порошкового металла. При изменении скорости движения датчика в результате действия инерционных сил происходит деформация пленки. Благодаря пьезоэффекту возникает разность потенциалов на границах слоев пленки, зависящая от ускорения. Чувствительный элемент датчика обладает чрезвычайно высочайшим выходным сопротивлением, в следствии этого на подложке датчика ACH-01 компании Atochem Sensors также имеется полевой транзистор с малым током затвора, который представляет собой подобие усилителя напряжения. Это позволяет измерять переменные ускорения со сравнительно низкой частотой. Датчики этого типа имеют плохую повторяемость характеристик в серийном производстве, высокую чувствительность к изменению температуры и давления. Они не могут контролировать постоянные ускорения и гравитационные силы. [6]

Объемные интегральные акселерометры

Микросхема датчика не имеет схемы обработки сигнала измерительного моста. Варианты датчика выделяются тем, что NAC-203 имеет интегрированные толстопленочные схемы, позволяющие произвести лазерную настройку чувствительности и температурной коррекции в процессе изготовления, а в NAC-201 реализация этих функций предоставляется пользователю. Входное и выходное сопротивления измерительного моста модели NAC-201 равны 2 кОм. Полоса пропускания по уровню 3 дБ составляет 500 Гц. Резонансная частота устройств, смонтированных в полном согласии с рекомендациями изготовителя, - не менее 10 кГц.

Интегральные датчики ускорения объемной системной конструкции имеют ряд недостатков. Во-первых, они сложны в производстве, потому что операции формирования довольно больших структур не очень просто сочетаются со стандартными поверхностными интегральными технологиями. Во-вторых, желательно использовать датчик как можно минимально возможных размеров на схемном кристалле также минимально возможных размеров. Уменьшение размеров кристалла дает повышение его механической прочности и снижение стоимости. В то же время в датчике объемной конструкции только на размещение чувствительного элемента потребуется от 6,5 до 16 мм2 площади кристалла.

Похожие работы на - Разработка системы контроля движения

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!