Мутационная изменчивость

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Биология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    56,8 Кб
  • Опубликовано:
    2015-02-07
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Мутационная изменчивость

ФГБОУ ВПО «Пензенский государственный университет»

Педагогический институт им. В.Г. Белинского

Кафедра «Общей биологии и биохимии»







Курсовая работа

по дисциплине «Биология»

на тему

Мутационная изменчивость



Выполнила: Акулова Е.Ю.

Студентка группы 14ВЛС2

Проверила: Карпова Г.А.

д.с.-х.н. зав. кафедрой




Пенза 2014 г.

СОДЕРЖАНИЕ

Введение

.   Мутационная изменчивость

2.      Мутация как качественное и количественное изменение генетического материала

.        Классификация мутаций

.        Краткая характеристика видов мутаций

Заключение

Литература

ВВЕДЕНИЕ

Термин “мутация” восходит к латинскому слову “mutatio”, что в буквальном переводе означает − изменения или перемена. Мутационная изменчивость обозначает устойчивые и явные изменения генетического материала, что выводится в наследственные признаки. Мутантные организмы могут отличаться от исходных (организмов дикого типа) по самым различным свойствам − морфологическим, физиологическим, биохимическим и другим. Мутации характерны для всех живых существ, включая человека. Именно это является первым звеном в цепочке формирования наследственных болезней и патогенеза.

Данное явление стало активно изучаться только во второй половине 20-го века, а изучение проблем мутационной изменчивости продолжает оставаться актуальным и в настоящее время, так как знание и понимание данного механизма становится ключевым для преодоления проблем человечества. Большая часть мутаций приводит к различным нарушениям нормального развития, некоторые из них летальны, однако вместе с тем многие мутации являются исходным материалом для естественного отбора и биологической эволюции. В целом можно сказать, что мутации являются вредными, полезными или нейтральными для организмов.

Мутации возникают на всех стадиях индивидуального развития организмов. Существует несколько видов мутаций в клетках. Их классификация зависит от разновидности самих клеток.

1. Мутационная изменчивость

Мутационной называется изменчивость самого генотипа. Мутации − это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Мутационная теория была создана голландцем Гуго де Фризом в 1901-1903 гг., который и ввел этот термин. Начав в 1901 г. изучение наследования признаков у растений ослинника, он обнаружил, что, несмотря на то, что обычно удавалось предсказать появление растения с тем или иным фенотипом, иногда появлялись формы, имеющие признаки, не наблюдавшиеся в предыдущих поколениях. Ученый предположил, что такие аномалии связаны с возникновением каких-то фенотипически проявляющихся изменений в генотипе, которые, кроме того, могут передаваться потомству.

Честь строгого доказательства возникновения мутаций принадлежит В. Иогансену, изучавшему наследование в чистых (самоопыляющихся) линиях фасоли и ячменя. Полученный им результат касался количественного признака - массы семян. Мерные значения таких признаков обязательно варьируют, распределяясь вокруг некой средней величины. Мутационное изменение подобных признаков и обнаружил В. Иоганнсен (1908-1913).

Гипотеза о возможности скачкообразных наследственных изменений - мутаций, которую на рубеже столетий обсуждали многие генетики (в том числе У. Бэтсон), получила экспериментальное подтверждение.

В последующие годы было обнаружено мутагенное действие на хромосомы и гены рентгеновских лучей, радиационного излучения, определенных химических веществ и биологических агентов. Постоянство кариотипа поддерживается в ряду клеточных поколений благодаря митозу. В ряду поколений организмов это постоянство обеспечивается сочетанием мейоза и оплодотворения. Нарушение Митоза и мейоза, обусловливающих закономерное распределение хромосом при образовании соматических и половых клеток, может служить причиной изменения строения и числа этих ядерных структур. Нередко хромосомные перестройки появляются в результате воздействия на клетки внешних факторов. К таким факторам относится, например, ионизирующее излучение, вызывающее разрывы хромосом и последующие изменения их структуры.

Процесс возникновения мутаций называют мутагенезом, а факторы среды, вызывающие появление мутаций и их частоту мутагенами.

В зависимости от их природы мутагены делятся на физические (ионизирующее излучение, УФ-излучение и др.), химические (большое число различных соединений), биологические (вирусы, мобильные генетические элементы, некоторые ферменты). Весьма условно деление мутагенов на эндогенные и экзогенные. Так, ионизирующее излучение, помимо первичного повреждения ДНК, образует в клетке нестабильные ионы (свободные радикалы), способные вторично вызывать повреждения генетического материала. Многие физические и химические мутагены являются также канцерогенами, т.е. индуцируют злокачественный рост клеток. Частота мутаций подчиняется распределению Пуассона, применяемому в биометрии, когда вероятность отдельного события очень мала, а выборка, в которой может возникнуть событие, велика. Вероятность мутаций в отдельном гене довольно низкая, однако число генов в организме велико, а в генофонде популяции - огромно.

Важно помнить, что мутанты остаются организмом того же вида, что и организм дикого типа, из которого они произошли. При этом мутации следует отличать от фенокопий, которые продуцируются факторами среды и, мимикрируя действие генов, не передаются по наследству.

2. Мутация как качественное и количественное изменение генетического материала

Мутации представляют собой качественные или количественные изменения ДНК клеток организма, приводящие к изменениям их генотипа.

Основные положения мутационной теории сводятся к следующему:

− Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.

−       В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.

−       Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

−       Вероятность обнаружения мутаций зависит от числа исследованных особей.

−       Сходные мутации могут возникать повторно.

−       Мутации ненаправленны (спонтанны), т.е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Изменения наследственного материала половых клеток в виде генных, хромосомных и геномных мутаций происходят постоянно. Особое место принадлежит генным мутациям. Они приводят к возникновению серий аллелей и, таким образом, к разнообразию содержания биологической информации.

Вклад мутационного процесса в видообразование носит двоякий характер. Изменяя частоту одного аллеля по отношению к другому, он оказывает на генофонд популяции прямое действие. Еще большее значение имеет формирование за счет мутантных аллелей резерва наследственной изменчивости. Это создает условия для варьирования аллельного состава генотипов организмов в последовательных поколениях путем комбинативной изменчивости. Благодаря мутационному процессу поддерживается высокий уровень наследственного разнообразия природных популяций. Совокупность аллелей, возникающих в результате мутаций, составляет исходный элементарный эволюционный материал. В процессе видообразования он используется как основа действия других элементарных эволюционных факторов.

Хотя отдельная мутация − событие редкое, общее число мутаций значительно. Допустим, что некая мутация возникает с частотой 1 на 100 000 гамет, количество локусов в геноме составляет 10 000, численность особей в одном поколении равна 10 000, а каждая особь производит 1000 гамет. При таких условиях по всем локусам за поколение в генофонде вида произойдет 106 мутаций. За среднее время существования вида, равное нескольким десяткам тысяч поколений, количество мутаций составит 1010. Большинство мутаций первоначально оказывает на фенотип особей неблагоприятное действие. В силу рецессивности мутантные аллели обычно присутствуют в генофондах популяций в гетерозиготных по соответствующему локусу генотипах.

Благодаря этому достигается тройственный положительный результат:

. исключается непосредственное отрицательное влияние мутантного аллеля на фенотипическое выражение признака, контролируемого данным геном;

. сохраняются нейтральные мутации, не имеющие приспособительной ценности в настоящих условиях существования, но которые смогут приобрести такую ценность в будущем;

. накапливаются некоторые неблагоприятные мутации, которые в гетерозиготном состоянии нередко повышают относительную жизнеспособность организмов (эффект гетерозиса).

Таким образом, создается резерв наследственной изменчивости популяции.

Доля полезных мутаций мала, однако их абсолютное количество в пересчете на поколение или период существования вида может быть большим. Допустим, что одна полезная мутация приходится на 1 млн. вредных. Тогда в рассматриваемом выше примере среди 106 мутаций за одно поколение 104 будет полезной. За время существования вида его генофонд обогатится 104 полезными мутациями.

Мутационный процесс, выполняя роль элементарного эволюционного фактора, происходит постоянно на протяжении всего периода существования жизни, а отдельные мутации возникают многократно у разных организмов. Генофонды популяций испытывают непрерывное давление мутационного процесса. Это обеспечивает накопление мутаций, несмотря на высокую вероятность потери в ряду поколений единичной мутации.

. Классификация мутаций

Трудности определения понятий “мутация” лучше всего иллюстрирует классификация ее типов.

Существует несколько принципов такой классификации.

По характеру изменения генома (см. рис. 1):

. Геномные мутации - изменение числа хромосом.

. Хромосомные мутации, или хромосомные перестройки, - изменение структуры хромосом.

. Генные мутации - изменение генов.

По проявлению в гетерозиготном состоянии:

. Доминантные мутации.

. Рецессивные мутации.

По уклонению от нормы или так называемого дикого типа:

. Прямые мутации.

. Реверсии. Иногда говорят об обратных мутациях, однако очевидно, что они представляют собой только часть реверсий, поскольку в действительности широко распространены так называемые супрессорные мутации.

В зависимости от причин, вызывающие мутации:

. Спонтанные, возникающие без видимой причины, т.е. без каких-либо индуцирующих воздействий со стороны экспериментатора.

. Индуцированные мутации

Только эти четыре способа классификации изменений генетического материала носят достаточно строгий характер и имеют универсальное значение. Каждый и подходов в этих способах классификации отражает некоторую существенную сторону возникновения либо проявления мутаций у любых организмов: эукариот, прокариот и их вирусов.


Существуют и более частные подходы к классификации мутаций:

По локализации в клетке:

. Ядерные.

. Цитоплазматические. В этом случае обычно подразумевают мутации неядерных генов.

По отношению к возможности наследования:

. Генеративные, происходящие в половых клетках.

. Соматические, происходящие в соматических клетках.

Очевидно, два последних способа классификации мутаций применимы к эукариотам, а рассмотрение мутаций с точки зрения их возникновения в соматических или половых клетках имеет отношение только к многоклеточным эукариотам.

Достаточно часто применяют такие классификации как:

по силе проявления аллелей:

−    гиперморфные (приводят к усилению действия гена за счет увеличения количества синтезируемого под его контролем продукта),

−             гипоморфные (ослабляют действие гена за счет уменьшения количества биохимического продукта, кодируемого аллелем дикого типа),

−             неоморфные (кодируют синтез продукта, отличающегося от синтезируемого под контролем аллеля дикого типа, и не взаимодействуют с ним),

−             аморфные (инактивируют действие гена),

−             антиморфные (действуют противоположно аллелям дикого типа);

по влиянию на жизнеспособность и/или плодовитость особей:

− летальные (обусловливают гибель мутанта),

− полулетальные (снижают жизнеспособность, мутанты обычно не доживают до репродуктивного возраста; согласно другому подходу, полулетальные мутации обусловливают гибель половины несущих их особей),

−       условно летальные (мутации не проявляются в одних − пермиссивных − условиях и легальны в других − непермиссивных − условиях),

− стерильные (не влияют на жизнеспособность, но резко снижают плодовитость),

−       нейтральные (не влияют на жизнеспособность и плодовитость),

− повышающие жизнеспособность и плодовитость особей (жизнеспособность количественно характеризует уровень выживаемости выборки рассматриваемого фенотипического класса по сравнению с другой выборкой в идентичных условиях внешней среды; под плодовитостью подразумевается способность организмов приносить жизнеспособное потомство; часто плодовитость характеризует число потомков одной особи женского пола, родившихся на протяжении ее репродуктивного периода);

по характеру регистрируемого проявления:

−    морфологические,

−             физиологические,

−             поведенческие (этологические),

−             биохимические и другие (подобное деление мутаций весьма условно: любой признак имеет биохимическую основу, физиологический механизм и морфологическое выражение);

В общем виде можно сказать, что мутации - это наследуемые изменения генетического материала. Об их появлении судят по изменениям признаков. В первую очередь это относится к генным мутациям. Хромосомные и геномные мутации выражаются также в изменении характера наследования признаков.

. Краткая характеристика видов мутаций

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т.е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации. наследственный мутантный хромосомный генетический

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию.

По типу молекулярных изменений выделяют:

− делеции (от латинского deletio - уничтожение), т.е. утрата сегмента ДНК от одного нуклеотида до гена;

−       дупликации (от латинского duplicatio удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

−       инверсии (от латинского inversio - перевертывание), т.е. поворот на 180о сегмента ДНК размерами от двух нуклеотидов до фрагмента, включающего несколько генов;

−       инсерции (от латинского insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Именно генные мутации обуславливают развитие большинства наследственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными болезнями, т.е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своем вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.

В настоящее время насчитывается более 4500 моногенных заболеваний. Наиболее частыми из них являются: муковисцидоз, фенилкетонурия, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушения обмена веществ (метаболизма) в организме.

Вместе с тем известен ряд случаев, когда изменение лишь одного основания в определенном гене оказывает заметное влияние на фенотип. Одним из примеров служит такая генетическая аномалия, как серповидноклеточная анемия. Рецессивный аллель, вызывающий в гомозиготном состоянии это наследственное заболевание, выражается в замене всего одного аминокислотного остатка в (B-цепи молекулы гемоглобина (глутаминовая кислота −» −> валин). Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. При этом развивается острая анемия и наблюдается снижение количества кислорода, переносимого кровью. Анемия вызывает физическую слабость, нарушения деятельности сердца и почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.

Хромосомные мутации являются причинами возникновения хромосомных болезней.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то, что хромосомные абберации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные (см. рис. 2).

Внутрихромосомные мутации - это абберации в пределах одной хромосомы (см. рис. 3). К ним относятся:

− делеции - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, делеция в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития. Этот симптомокомплекс известен как синдром “кошачьего крика”, поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье);

−       инверсии. В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180о. В результате нарушается только порядок расположения генов;

−       дупликации - удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу 9-й хромосомы обуславливает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Рис. 2. Разновидности хромосомных мутаций

Межхромосомные мутации, или мутации перестройки - обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от латинских trans - за, через и locus - место). Это:

− реципрокная транслокация - две хромосомы обмениваются своими фрагментами;

−       нереципрокная транслокация - фрагмент одной хромосомы транспортируется на другую;

−       “центрическое” слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры “сестринские” хроматиды становятся “зеркальными” плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называются изохромосомами.

Рис. 3. Хромосомные перестройки, изменяющие расположение генов в хромосомах

Транслокации и инверсии, являющиеся сбалансированными хромосомными перестройками, не имеют фенотипических проявлений, но в результате сегрегации перестроенных хромосом в мейозе могут образовать несбалансированные гаметы, что повлечет за собой возникновение потомства с хромосомными аномалиями.

Геномные мутации, как и хромосомные, являются причинами возникновения хромосомных болезней.

К геномным мутациям относятся анеуплоидии и изменения плоидности структурно неизмененных хромосом. Геномные мутации выявляются цитогенетическими методами.

Анеуплоидия - изменение (уменьшение - моносомия, увеличение - трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n+1, 2n-1 и т.д.).

Полиплоидия - увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидий являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

− трисомия - наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре при болезни Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, XXY, XYY);

−       моносомия - наличие только одной из двух гомологических хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона не возможно. Единственная моносомия у человека, совместимая с жизнью - моносомия по Х-хромосоме - приводит к синдрому Шерешевского-Тернера (45,Х).

Причиной, приводящей к анеуплодии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от других негомологичных хромосом. Термин нерасхождение означает отсутствие разделения хромосом или хроматид в мейозе или митозе.

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки, таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая - не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т.е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомная зигота образуется по какой-либо аутосомной хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

По типу наследования различают доминантные и рецессивные мутации. Отдельные исследователь выделяют полудоминантные, кодоминантные мутации. Доминантные мутации характеризуются непосредственным эффектом на организм, полудоминантные мутации заключаются в том, что гетерозиготная форма по фенотипу является промежуточной между формами АА и аа, а для кодоминантных мутаций характерно то, что у гетерозигот A1A2 проявляются признаки обоих аллелей. Рецессивные мутации не проявляются у гетерозигот.

Если доминантная мутация встречается в гаметах, ее эффекты выражаются непосредственно в потомстве. Многие мутации у человека являются доминантными. Они часты у животных и растений. Например, генеративная доминантная мутация дала начало анконской породе коротконогих овец.

Примером полудоминантной мутации может служить мутационное образование гетерозиготной формы Аа, промежуточной по фенотипу между организмами АА и аа. Это имеет место в случае биохимических признаков, когда вклад в признак обоих аллелей одинаков.

Примером кодоминантной мутации являются аллели IA и IB, детерминирующие группу крови IV.

Таким образом, главными факторами в детерминировании вероятности проявления мутантного аллеля в организме и популяции являются не только стадия репродуктивного цикла, но и доминантность мутантного аллеля.

Прямые мутации − это мутации, инактивирующие гены дикого типа, т.е. мутации, которые изменяют информацию, закодированную в ДНК, прямым образом, в результате чего изменение от организма исходного (дикого) типа идет прямым образом к организму мутантного типа.

Обратные мутации представляют собой реверсии к исходным (диким) типам от мутантных. Эти реверсии бывают двух типов. Одни из реверсий обусловлены повторными мутациями аналогичного сайта или локуса с восстановлением исходного фенотипа и их называют истинными обратными мутациями. Другие реверсии представляют собой мутации в каком-то другом гене, которые изменяют выражение мутантного гена в сторону исходного типа, т.е. повреждение в мутантном гене сохраняется, но он как бы восстанавливает свою функцию, в результате чего восстанавливается фенотип. Такое восстановление (полное или частичное) фенотипа вопреки сохранению первоночального генетического повреждения (мутации) получило название супрессии, а такие обратные мутации назвали супрессорными (внегенными). Как правило, супрессии происходят в результате мутаций генов, кодирующих синтез тРНК и рибосом.

В общем виде супрессия может быть:

−   внутригенной − когда вторая мутация в уже затронутом гене изменяет дефектный в результате прямой мутации кодон таким образом, что в полипептид встраивается аминокислота, способная восстановить функциональную активность данного белка. При этом данная аминокислота не соответствует исходной (до возникновения первой мутации), т.е. не наблюдается истинной обратимости;

−             внесенной − когда изменяется структура тРНК, в результате чего мутантная тРНК включает в синтезируемый полипептид другую аминокислоту вместо кодируемой дефектным триплетом (являющимся результатом прямой мутации).

Не исключена компенсация действия мутагенов за счет фенотипической супрессии. Ее можно ожидать, когда на клетку действует фактор, повышающий вероятность ошибок при считывании мРНК во время трансляции (например, некоторые антибиотики). Такие ошибки могут приводить к подстановке неправильной аминокислоты, восстанавливающей, однако, функцию белка, нарушенную в результате прямой мутации.

Мутации, помимо качественных свойств, характеризует и способ возникновения. Спонтанные (случайные) - мутации, возникающие при нормальных условиях жизни. Они являются результатом естественных процессов, протекающих в клетках, возникают в условиях природного радиоактивного фона Земли в виде космического излучения, радиоактивных элементов на поверхности Земли, радионуклидов, инкорпорированных в клетки организмов, которые вызывают эти мутации или в результате ошибок репликации ДНК. Спонтанные мутации возникают у человека в соматических и генеративных тканях. Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. Проведенное в Дании исследование показали, что примерно одна из 24000 гамет несет в себе доминантную мутацию. Частота спонтанного мутирования у каждого вида генетически обусловлена и поддерживается на определенном уровне.

Индуцированный мутагенез - это искусственное получение мутаций с помощью мутагенов различной природы. Различают физические, химические и биологические мутагенные факторы. Большинство этих факторов либо прямо реагирует с азотистыми основаниями в молекулах ДНК, либо включается в нуклеотидные последовательности. Частоту индуцированных мутаций определяют сравнением клеток или популяций организмов, обработанных и необработанных мутагеном. Если частота мутации в популяции повышается в результате обработки мутагеном в 100 раз, то считают, что лишь один мутант в популяции будет спонтанным, остальные будут индуцированными. Исследования по созданию методов направленного воздействия различных мутагенов на конкретные гены имеют практическое значение для селекции растений, животных и микроорганизмов.

По типу клеток, в которых возникают мутации, различают генеративные и соматические мутации (см. рис. 4).

Генеративные мутации возникают в клетках полового зачатка и в половых клетках. Если мутация (генеративная) происходит в генитальных клетках, то мутантный ген могут получить сразу несколько гамет, что увеличит потенциальную способность наследования этой мутации несколькими особями (индивидуумами) в потомстве. Если мутация произошла в гамете, то, вероятно, лишь одна особь (индивид) в потомстве получит этот ген. На частоту мутаций в половых клетках оказывает влияние возраст организма.

Рис. 4. Разновидности мутаций по отношению к возможности наследования

Соматические мутации встречаются в соматических клетках организмов. У животных и человека мутационные изменения будут сохраняться только в этих клетках. Но у растений из-за их способности к вегетативному размножению мутация может выйти за пределы соматических тканей. Например, знаменитый зимний сорт яблок “Делишес” берет начало от мутации в соматической клетке, которая в результате деления привела к образованию ветви, имевшей характеристики мутантного типа. Затем следовало вегетативное размножение, позволившее получить растения со свойствами этого сорта.

Классификацию мутаций в зависимости от их фенотипического эффекта впервые предложил в 1932 г. Г. Мёллер. Согласно классификации были выделены:

− аморфные мутации. Это состояние, при котором признак, контролируемый патологическим аллелем, не проявляется, так как патологический аллель не активен по сравнению с нормальным аллелем. К таким мутациям относятся ген альбинизма и около 3000 аутосомно-рецессивных заболеваний;

−       антиморфные мутации. В этом случае значение признака, контролируемого патологическим аллелем, противоположно значению признака, контролируемого нормальным аллелем. К таким мутациям относятся гены около 5-6 тыс. аутосомно-доминантных заболеваний;

−       гиперморфные мутации. В случае такой мутации признак, контролируемый патологическим аллелем, выражен сильнее признака, контролируемого нормальным аллелем. Пример − гетерозиготные носители генов болезней нестабильности генома. Их число составляет около 3% населения Земли, а количество самих заболеваний достигает 100 нозологий. Среди этих заболеваний: анемия Фанкони, атаксиятелеангиэктазия, пигментная ксеродерма, синдром Блума, прогероидные синдромы, многие формы рака и др. При этом частота рака у гетерозиготных носителей генов этих заболеваний в 3-5 раз выше, чем в норме, а у самих больных (гомозигот по этим генам) частота рака в десятки раз выше, чем в норме.

−       гипоморфные мутации. Это состояние, при котором проявление признака, контролируемого патологическим аллелем, ослаблено по сравнению с признаком, контролируемым нормальным аллелем. К таким мутациям относятся мутации генов синтеза пигментов (1q31; 6p21.2; 7p15-q13; 8q12.1; 17p13.3; 17q25; 19q13; Xp21.2; Xp21.3; Xp22), а также более 3000 форм аутосомно-рецессивных заболеваний.

−       неоморфные мутации. О такой мутации говорят, когда признак, контролируемый патологическим аллелем, будет иного (нового) качества по сравнению с признаком, контролируемым нормальным аллелем. Пример: синтез новых иммуноглобулинов в ответ на проникновение в организм чужеродных антигенов.

Говоря о непреходящем значении классификации Г. Мёллера, следует отметить, что спустя 60 лет после ее публикации фенотипические эффекты точковых мутаций были разделены на разные классы в зависимости от оказываемого ими воздействия на структуру белкового продукта гена и/или уровень его экспрессии.

ЗАКЛЮЧЕНИЕ

Итак, мутации представляют собой стойкое изменение генотипа. Мутационная изменчивость, являющаяся результатом возникающих стойких изменений генов и/или хромосом, обусловливает заметные качественные изменения наследственных признаков. Таким образом, процесс возникновения мутаций можно рассматривать как постоянно действующий элементарный эволюционный фактор, оказывающий давление на популяции.

Наследственная мутационная изменчивость и обусловленная ею генетическая гетерогенность. наряду с уникальностью и гетерогенностью генотипов и фенотипов в результате комбинативной изменчивости вносит огромный вклад в вариабельность генома и фенома человека. Охарактеризовать с современных позиций такое сложное, многообразное явление как мутационный процесс чрезвычайно трудно. Сложность этой задачи наглядно иллюстрирует многообразие подходов к классификации мутаций. В то же время, проблема профилактики наследственной патологии хотя бы частично может быть решена только при выяснении механизма становления мутаций. Важнейшей задачей науки остается уменьшение генетического груза путем предотвращения или снижения вероятности мутаций и устранения возникших в ДНК изменений с помощью генной инженерии, обращение мутаций на пользу человеку.

ЛИТЕРАТУРА

1. Алиханян С.И., Акифьев А.П., Чернин Л.С. Общая генетика: учебник для ун-тов по спец. “Биология”. − М.: Высшая школа, 1985. − 445 с.

2.      Биология. Учеб. для медиц. спец. вузов. / Под ред. В.Н. Ярыгина. В 2 кн. − 5-е изд., испр. и доп. − М.: Высш. шк., 2003, Кн.1 − 432с., Кн.2 − 334с.

.        Генетика / Под ред. В.И. Иванова − М.: ИКЦ “Академкнига”, 2006. − 638 с.

4.      Гинтер Е.К. Медицинская генетика: Учебник. − М.: Медицина, 2003. − 448 c.

5. Гуттман Б., Гриффите Э., Сузуки Д., Куллис Т. Генетика. - М.: ФАИР-ПРЕСС, 2004. - 448 с.

6.      Курчанов Н.А. Генетика человека с основами общей генетики − СПб.: СпецЛит, 2009. − 192 с.

7. Мутовин Г.Р. Клиническая генетика. Геномика и протеомика наследственной патологии: учеб. пособие. − 3-е изд., перераб. и доп., 2010. − 832 с.

.   Пехов А. П. Биология с основами экологии. − СПб.: Лань, 2000. − 672 с.

9.      Приходченко Н.Н., Шкурат Т.П. Основы генетики человека : учебное пособие для колледжей и вузов. - Ростов Н / Д.: Феникс, 1997. - 365 с.

.        Пузырев Н.П., Смирнихина С.А. Клиническая генетика: учебник − 4-е изд., доп. и перераб. − М.:ГЭОТАР-Медиа, 2011. − 592 с.

.        Фогель Ф., Мотульски А. Генетика человека. В 3 т. − М.: Мир, 1990. Т. 2 − 378 с.

Похожие работы на - Мутационная изменчивость

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!