Физические загрязнения

  • Вид работы:
    Реферат
  • Предмет:
    Экология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    327,4 Кб
  • Опубликовано:
    2015-06-24
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Физические загрязнения

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

имени Г. В. ПЛЕХАНОВА»

Факультет гостинично-ресторанной туристической и спортивной индустрии

Кафедра технологии и организации предприятий питания





Проект на тему : «Физические загрязнения »



Выполнили :

Студентки группы 751

Шестёрина Светлана

Дырива Екатерина

Тюкова Алина

Гудина Татьяна


Москва 2014 г

Тепловое загрязнение

Тепловое загрязнение - выброс тепла в атмосферу и в водные ресурсы, вызванный техногенной деятельностью человека, и наряду с выбросами парниковых газов, служащий одним из факторов глобального потепления.

Источники

Существует два основных источника загрязнения атмосферы: естественный и антропогенный. Естественный - это вулканы, лесные пожары, пыльные бури, выветривание, процессы разложения растений и животных. Источником антропогенного загрязнения атмосферы различными веществами являются теплоэнергетика, нефтегазопереработка, промышленность, транспорт и др. По мнению специалистов, в результате деятельности человека в атмосферу Земли ежегодно поступает 25,5 миллиардов тонн оксидов углерода, 190 миллионов тонн оксидов серы, 65 миллионов тонн оксидов азота, 1,4 миллиона тонн хлорфторуглеродов. Половина всех выбросов в атмосферу приходится на предприятия таких отраслей промышленности, как энергетика 24,8% и металлургия 26,2%.

В последние годы наибольшее количество вредных веществ в атмосферу выбрасывается с выхлопными газами автомобилей, причём их доля постоянно возрастает.

В промышленных центрах и крупных городах атмосфера подвергается тепловому загрязнению в связи с тем, что в атмосферу поступают вещества с более высокой температурой, чем окружающий воздух. Температура выбросов обычно выше средней многолетней температуры приземного слоя воздуха. Из труб промышленных предприятий, выхлопных труб двигателей внутреннего сгорания, при отоплении домов, лесных пожарах выделяются вещества, нагретые до 60 градусов Цельсия и более

Источникам теплового загрязнения почв в пределах городских территорий служат :

Подземные газоходы промышленных предприятий металлургического производства (140-160°C)

Теплотрассы(50-150°C)

Сборные коллекторы

Коммуникационные туннели(35-40°C)

Туннели метро и другие подземные сооружения(18-25 °C)

Искусственное промораживание грунтов при строительстве в сложных гидрогеологических условиях приводит к формированию временных криозон (от -10 до -26 °C ) шириной до нескольких метров.

температуры над фоновой на 6-10 градусов Цельсия.

Последствия.

Тепловое загрязнение является причиной создания тепловых островов, местной (искусственной) инверсии температур над источником, что приводит к развитию микроциркуляций атмосферы, изменению микроклимата и усложнению механизма переноса загрязнений.

Возникают проблемы в реках и прибрежных океанических водах. Обычно такое загрязнение связано с использованием природных вод в качестве охлаждающих агентов в промышленных процессах, например на электростанциях. Вода, возвращаемая в водоемы предприятиями, теплее исходной и, следовательно, содержит меньше растворенного кислорода. Одновременно нагревание среды увеличивает интенсивность метаболизма её обитателей, а, значит, их потребность в кислороде. Если температура сбрасываемой воды незначительно отличается от температуры воды в водоеме, то никаких изменений биотического компонента экосистемы может не произойти. Если же температура повышается существенно, то в биоте могут произойти серьёзные изменения. Например, для проходных рыб типа лосося бедные кислородом участки рек становятся непреодолимыми препятствиями, и связь этих видов с нерестилищами прерывается.

Меняются физические свойства воды, что неблагоприятно влияет на обитателей водоемов. Основным фактором ухудшения её качества является снижение растворимости кислорода, которая уменьшается на одну треть при температуре 30С, вызывая эвтрофикацию водоёмов и их видовой состав.

Происходит увеличении температуры подземных вод против фоновых значений. Тепловому загрязнению сопутствуют, как правило, уменьшение содержания кислорода в воде, изменение её химического и газового состава, цветение воды и увеличение содержания в воде микроорганизмов. Тепловое загрязнение подземных вод обусловливается как поступлением в водоносные горизонты нагретых сточных вод с поверхности, так и внедрением вод нижележащих горизонтов вследствие затрубных перетоков.

Выбросы тепла в окружающую среду в центрах крупных городов приводят к повышению температуры воздуха на 2-3 С по сравнению с периферией

Меры предотвращения.

Основным способом снижения теплового загрязнения является постепенный отказ от ископаемого топлива и переход на возобновляемую энергию, использующую солнечные источники энергии: свет, ветер и гидроресурсы. Вспомогательной мерой может быть переход от экономики общества потребления к ресурсной экономике.

Световое загрязнение - осветление ночного неба искусственными источниками света, свет которых рассеивается в нижних слоях атмосферы. Иногда это явление также называют световым смогом.

Причины светового загрязнения.

Основными источниками светового загрязнения являются крупные города и промышленные комплексы. Световое загрязнение создаётся уличным освещением, светящимися рекламными щитами или прожекторами. В Европе многие дискотеки направляют мощные пучки света в ночное небо.

Больша́я часть излучаемого света направляется или отражается наверх, что создаёт над городами так называемые световые купола. Это вызвано неоптимальной и неэффективной конструкцией многих систем освещения, ведущей к расточительству энергии. Эффект осветления неба усиливается распространёнными в воздухе частицами пыли, так называемыми аэрозолями. Эти частицы дополнительно преломляют, отражают и рассеивают излучаемый свет.

Световое загрязнение - сопровождающее явление индустриализации и встречается прежде всего в густо заселённых регионах развитых стран. В Европе около половины населения так или иначе регулярно сталкивается со световым загрязнением. Ежегодный рост светового загрязнения в разных странах Европы составляет от 6% до 12 %.

Последствия светового загрязнения.

Пример светового загрязнения: слева - безоблачная ночь в национальном парке Глейшер (США), справа - облачная ночь в Берлине (Германия)

Световое загрязнение влияет на устоявшуюся экосистему и имеет многочисленные последствия.

Перерасход электроэнергии

Чрезмерное ночное освещение ведет к перерасходу электроэнергии и увеличению выбросов парниковых газов. В среднем, одна лампа уличного освещения потребляет 400 ватт, таким образом, за 8 часов работы каждой лампой расходуется 3,2 кВт·ч электроэнергии.

Влияние на живые организмы

Искусственное осветление окружающей среды влияет на цикл роста многих растений. Распространённые источники белого света с большим удельным весом голубого света в спектре мешают ориентации многих видов насекомых, ведущих ночной образ жизни, а также сбивают с пути перелётных птиц, старающихся облетать очаги цивилизации. Согласно наблюдениям, каждый уличный светильник ежесуточно является причиной гибели 150 насекомых. С учётом числа светильников в одной только Германии каждую ночь от них погибает более миллиарда насекомых. При этом не учтены многие другие источники света, такие как освещение промышленных комплексов, светящаяся реклама и освещение жилых домов.

Не до конца исследовано воздействие светового загрязнения на хронобиологию человеческого организма. Возможны отклонения в гормональном балансе, тесно связанном с воспринимаемым циклом дня и ночи. Из более очевидных последствий нужно отметить менее крепкий сон, и, как следствие, быструю утомляемость.

Световое загрязнение в крупных городах делает практически невозможным астрономические наблюдения.

Генерaльный секретaрь ANPCEN(асоцияация защиты ночного неба) Пьер Брюне (Pierre Brunet) в своей речи назвал Москву чемпионом по «световому зaгрязнению». Столица России, по его словам, делит печaльное первенство с Шaнхaем, остaвляя дaлеко позaди дaже Нью-Йорк и Берлин.

Очевидно, чтобы решить проблему, надо по максимуму сократить использование искусственного света в городах. Для этого были изобретена система «умного освещения», при которой жители могут регулировать и отключать свет в случае ненадобности.

Во многих странах проходят акции против светового загрязнения.

Шумовое загрязнение

Шумовое загрязнение (акустическое загрязнение, англ. Noise pollution, нем. Lärm) - раздражающий шум антропогенного происхождения, нарушающий жизнедеятельность живых организмов и человека. Раздражающие шумы существуют и в природе (абиотические и биотические), однако считать загрязнением их неверно, поскольку живые организмы адаптировались к ним в процессе эволюции.

Главным источником шумового загрязнения являются транспортные средства - автомобили, железнодорожные поезда и самолёты.

В городах уровень шумового загрязнения в жилых районах может быть сильно увеличен за счёт неправильного городского планирования (например, расположение аэропорта в черте города), другими важными источниками шумового загрязнения в городах являются промышленные предприятия, строительные и ремонтные работы, автомобильная сигнализация, собачий лай, шумные люди и т. д.

С наступлением постиндустриальной эпохи всё больше и больше источников шумового загрязнения (а также электромагнитного) появляется и внутри жилища человека. Источником этого шума является бытовая и офисная техника.

Более половины населения Западной Европы проживает в районах, где уровень шума составляет 55÷70 дБ.

Влияние на здоровье людей.

Шум в определённых условиях может оказывать значительное влияние на здоровье и поведение человека. Шум может вызывать раздражение и агрессию, артериальную гипертензию (повышение артериального давления), тиннитус (шум в ушах), потерю слуха.

Наибольшее раздражение вызывает шум в диапазоне частот 3000÷5000 Гц.

Хроническая подверженность шуму на уровне более 90 дБ может привести к потере слуха.

При шуме на уровне более 110 дБ у человека возникает звуковое опьянение, по субъективным ощущениям аналогичное алкогольному или наркотическому.

При шуме на уровне 145 дБ у человека происходит разрыв барабанных перепонок.

Женщины менее устойчивы к сильному шуму, чем мужчины. Кроме того, восприимчивость к шуму зависит также от возраста, состояния здоровья, окружающих условий и т. д.

Дискомфорт вызывает не только шумовое загрязнение, но и полное отсутствие шума. Более того, звуки определённой силы повышают работоспособность и стимулируют процесс мышления и, наоборот, при полном отсутствии шумов человек теряет работоспособность и испытывает стресс. Наиболее оптимальными для человеческого уха являются естественные шумы: шелест листьев, журчание воды, пение птиц. Индустриальные шумы любой мощности не способствуют улучшению самочувствия. Шум от автомобильного транспорта способен вызывать головные боли.

Вредное воздействие шума известно издревле. Например, в Средние века существовала казнь «под колоколом». Звон колокола медленно убивал человека.

Влияние на окружающую среду

Одними из самых известных случаев ущерба, наносимых шумовым загрязнением природе, являются многочисленные случаи, когда дельфины и киты выбрасывались на берег, теряя ориентацию из-за громких звуков военных гидролокаторов (сонаров).

Предотвращение.

В настоящее время разработано много методик, позволяющих уменьшить или устранить некоторые шумы.

Шумовое загрязнение от какого-либо объекта можно до некоторой степени уменьшить, если на этапе разработки проекта этого объекта смоделировать с учётом различных внешних условий (например, топология и погодные условия местности) характер шумов, которые будут возникать и затем отыскать пути их устранения или хотя бы уменьшения. В настоящее время этот способ стал гораздо проще и доступнее за счёт развития электронно-вычислительной техники. Это наиболее дешёвый и рациональный способ снижения шумов, использующийся, например, при строительстве железных дорог в городских районах.

В некоторых случаях рациональнее на данный момент бороться не с причиной, а со следствием. Например, проблему шумового загрязнения жилых помещений можно значительно уменьшить за счёт их звукоизоляции (установка специальных окон и т. п.).

Регламентация шумового загрязнения.

В Российской Федерации действуют ГОСТы и санитарные нормы (СН), регулирующие предельно допустимый уровень шума для рабочих мест, жилых помещений, общественных зданий и территорий жилой застройки.Для ночного времени суток ПДУ шума для автомобилей на городских автодорогах составляет 40 дБ, в то время как на многих автомагистралях Москвы и других крупных городов России уровень шума составляет не менее 70 дБ.

Электромагнитное загрязнение

Экологическая проблема

В процессе эволюции и жизнедеятельности человек испытывает влияние естественного электромагнитного фона. Однако вследствие научно-технического прогресса электромагнитный фон Земли в настоящее время не только увеличился, но и претерпел качественные изменения. Появились электромагнитные излучения таких длин волн, которые имеют искусственное происхождение в результате техногенной деятельности (например, миллиметровый диапазон длин волн и др.). Спектральная интенсивность некоторых техногенных источников электромагнитного поля (ЭМП) может существенным образом отличаться от эволюционно сложившегося естественного электромагнитного фона, к которому привыкли человек и другие живые организмы биосферы.

Постоянно возрастающим негативным фактором городской среды являются электромагнитные поля (ЭМП), создаваемые различными устройствами, генерирующими, передающими и использующими электрическую энергию. Электромагнитное загрязнение среды населенных мест стало столь существенным, что ВОЗ включила эту проблему в число наиболее важных для нормального существования человека.

Источники электромагнитных полей

Любое техническое устройство, использующее либо вырабатывающее электрическую энергию, является источником ЭМП, излучаемых во внешнее пространство. Источники ЭМП

Среди основных источников ЭМИ можно перечислить:

линии электропередач (городского освещения, высоковольтные

электропроводка (внутри зданий, телекоммуникации

бытовые электроприборы

теле-и радиостанции (транслирующие антенны

спутниковая и сотовая связь (транслирующие антенны), радары

персональные компьютеры.

Таблица. Техногенные источники ЭМП

Название

Диапазон частот (длин волн)

Радиотехнические объекты

30 кГц...30 МГц

Радиопередающие станции

30 кГц...300 МГц

Радиолокационные и радионавигационные станции

СВЧ-диапазон (300 МГц- 300 ГГц)

Телевизионные станции

30 МГц...З ГГц

Плазменные установки

Видимый, ИК-, УФ-диапазоны

Термические установки

Видимый, ИК-диапазон

Высоковольтные линии электропередач

Промышленные частоты, статическое электричество

Рентгеновские установки

Жесткий УФ-, рентгеновский диапазон, видимое свечение

Лазеры

Оптический диапазон

Мазеры

СВЧ-диапазон

Технологические установки

ВЧ-, СВЧ-, ИК-, УФ-, видимый, рентгеновский диапазоны

Ядерные реакторы

Рентгеновское иγ-излучение, ИК-, видимое и т. п.

Источники ЭМП специального назначения (наземные, водные, подводные, воздушные), применяемые в радиоэлектронном противодействии

Радиоволны, оптический диапазон, акустические волны (комби нированность действия)


Последствия

Организм человека, находящегося в электромагнитном поле, поглощает его энергию, в тканях возникают высокочастотные токи с образованием теплового эффекта. Биологическое действие электромагнитного излучения зависит от длины волны, напряженности поля (или плотности потока энергии), длительности и режима воздействия (постоянный, импульсный). Чем выше мощность поля, короче длина волны и продолжительнее время облучения, тем сильнее негативное влияние ЭМП на организм. При воздействии на человека электромагнитного поля малой интенсивности возникают нарушения электрофизиологических процессов в центральной нервной и сердечно-сосудистой системах, функций щитовидкой железы, системы "гипофиз - кора надпочечников", генеративной функции организма.

Для предотвращения неблагоприятного влияния ЭМП на население установлены предельно допустимые уровни (ПДУ) напряженности электромагнитного поля, кВ/м:внутри жилых зданий - 0,5;на территории зоны жилой застройки - 1,0;в населенной местности вне зоны жилой застройки - 10;в ненаселенной местности (часто посещаемой людьми) - 15;в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) - 20.

Биологические эффекты от воздействия ЭМИ могут проявляться в различной форме: от незначительных функциональных сдвигов до нарушений, свидетельствующих о развитии явной патологии. Следствием поглощения энергии ЭМИ является тепловой эффект. Для длительного воздействия ЭМИ различных диапазонов длин волн при умеренной интенсивности (выше ПДУ) характерным считают развитие функциональных расстройств ЦНС с не резко выраженными сдвигами эндокринно-обменных процессов и состава крови. В связи с этим могут появиться головные боли, повышение и понижение давления, урежение пульса, изменение проводимости в сердечной мышце, нервно-психические расстройства, быстрое развитие утомления. Возможны трофические нарушения: выпадение волос, ломкость ногтей, снижение массы тела. Наблюдаются изменения возбудимости обонятельного, зрительного и вестибулярного анализаторов. На ранней стадии изменения носят обратимый характер, при продолжающемся воздействии ЭМИ происходит стойкое снижение работоспособности. В пределах радиоволнового диапазона доказана наибольшая биологическая активность микроволнового СВЧ-поля в сравнении с. ВЧ и УВЧ.

Острые нарушения при воздействии ЭМИ (аварийные ситуации) сопровождаются сердечнососудистыми расстройствами с обмороками, резким учащением пульса и снижением артериального давления. В последнее время особое беспокойство у специалистов в области электромагнитной безопасности человека вызывают сотовые телефоны и компьютеры, а также разнообразные радиоэлектронные и электрические изделия, широко используемые в быту: телевизоры, игровые приставки, микроволновые печи, электроплиты, электрочайники, холодильники, электроутюги, электрофены, электробритвы, электромассажеры, электрогрелки, электроодеяла, отопительные электрорадиаторы и другая бытовая техника.

Ситуация в России

Если в западных странах используется безопасная трехпроводная сеть, а панели и кожухи электроприборов тщательно заземлены, то в России все совсем иначе: сеть старая двухпроводная, без заземления. Естественно, и уровень излучения получается в разы больше.

В Санкт-Петербурге интенсивность ЭМП в 1000 раз превышает внегородской уровень, а средняя индукция техногенного низкочастотного магнитного поля составляет 0,6 мкТл в рабочие дни, а в субботу и воскресенье падает в 1,5 раза.

В Москве только за последние годы уровень электромагнитного загрязнения вырос в 20 - 30 раз. Напряженность же электромагнитных полей в крупных промышленных центрах России увеличилась за последние несколько десятилетий в тысячи раз.

Факты свидетельствуют, что обычный уровень низкочастотного электромагнитного поля крупного промышленного города соответствует ситуации природной "магнитной бури" (аномально высокой геомагнитной активности).

Большую опасность представляют электрические и магнитные поля токов промышленной частоты (50 Гц). Для электрического поля промышленной частоты существует гигиенический норматив 5 кВ/м, однако специалисты считают, что безопасным является уровень 0,5 кВ/м. Обычно в квартире уровень напряжения электрического поля от 5 до 80 В/м, что много меньше безопасного уровня 500 В/м. Под ЛЭП 400 - 753 кВ напряженность электрического поля превышает Е = 10 кВ/м. Гигиенические нормативы разрешают работнику находиться в зоне воздействия электрического поля с частотой 50 Гц и Е = 10 кВ/м не более 3 ч, а для Е = 20 кВ/м и выше не более 10 мин в день. Жить близко от ЛЭП опасно.

Вдоль трассы высоковольтной линии (ВЛ), проходящей через населенную местность, границу санитарно-защитной зоны выбирают в соответствии с размерами, представленными в табл. 20.

Таблица 20

Границы санитарно-защитной зоны

Напряжение ВЛ, кВ

Расстояние от проекции на землю крайних фаз проводов, м

1150

300

750

250

500

330

75

220

25

110

20

35

15

До 20

10


В пределах санитарно-защитной (охранной) зоны запрещается размещать жилые здания, стоянки и остановки транспорта, устраивать места отдыха, спортивные и игровые площадки.

Источниками опасных магнитных полей в наших квартирах являются все сильноточные приборы: грили, утюги, вытяжки, холодильники, телевизоры, компьютеры и блоки питания, общий силовой кабель подъезда или лифта.

Пальма первенства в списке опасных приборов принадлежит приборам для приготовления пищи - электроплите и микроволновой печи. Хозяйки проводят около плиты часы, а значения магнитного поля электроплиты на расстоянии 30 см составляют 0,4 - 4 мкТл. Магнитное поле микроволновой печи даже на расстоянии 1 м редко бывает ниже 0,5 мкТл. Высокие значения магнитного поля регистрируют также у посудомоечных машин и стиральных машин с сушкой белья.

Специалисты московского Центра электромагнитной безопасности провели измерения магнитного поля некоторых бытовых приборов. Приняв расстояния, на которых регистрируется поле 0,2 мкТл и более за зону риска, они составили таблицу результатов измерений (табл. 21). Заметим, что все эти приборы были не электрическими подделками неизвестных мастеров, а продукцией крупнейших фирм - производителей электроники и бытовой техники.

Измерения показали, что из-за силовых кабелей и распределительных щитов в некоторых комнатах от 60 до 90 % площади имеют уровень магнитного поля, превышающий 0,2 мкТл. Эти зоны нецелесообразно использовать для сна и отдыха, размещения детей.

Таблица 21

Зона риска бытовых приборов

Источник магнитного поля

Зона риска

Холодильник

1 ,2 м от двери 1 ,5 м от задней стенки

Электрогриль

1,4м

Телевизор

1,1 м от экрана 1 ,2 м от боковой стенки

Элеюронагреватель

0,3м

Торшер, две лампы по 75 Вт

0,03 м от провода

Элеюродуховка

0,4 м от передней стенки

Утюг

0,23 м от ручки


Защита окружающей среды

Минимальное воздействие магнитного поля на окружающих можно обеспечить при соблюдении простых правил:

используйте типы электроприборов с меньшим уровнем электропотребления (чем меньшую мощность потребляет прибор, тем лучше);

размещайте наиболее опасные приборы на расстоянии не менее 1,5 м от мест продолжительного пребывания или сна. Переставьте кровати в комнатах так, чтобы они оказались на максимальном расстоянии от источников магнитного поля. Особое внимание уделите электромагнитной безопасности мест, которые облюбовали для игр и отдыха дети;

не включайте одновременно большое число электроприборов;

не делайте "кольца" и "петли" из проводов;

по возможности используйте приборы с автоматическим управлением, позволяющим не находиться рядом с ними во время работы.

Заметим, что внутриквартирные перегородки и даже несущие стены не служат защитой от низкочастотного магнитного поля. При планировке расположения электроприборов следует учитывать и то, какие источники магнитного поля могут быть установлены у соседей за стенкой.

В электропоездах (электричках, метро, трамваях, троллейбусах) уровень ЭМП превышает естественный фон в сотни тысяч раз, а напряженность магнитного поля может достигнуть 10 мТл и превысить безопасный уровень в 5000 раз. Воздействие таких полей может служить пусковым механизмом для патологических процессов у людей, страдающих сердечно-сосудистыми заболеваниями, и может привести к инфаркту.

Особую озабоченность вызывает электромагнитная обстановка около радиопередающих центров (табл. 22). "Санитарные правила и нормы защиты населения г. Москвы от электромагнитных полей радиопередающих объектов" устанавливают, что напряженность переменного электрического поля, создаваемого радиотехническими объектами в диапазоне 30 - 300 МГц, не должна превышать 2 В/м для жилых зданий любого вида, детских образовательных учреждений и других помещений, предназначенных для круглосуточного пребывания людей. Предельная напряженность электрического поля на этих частотах составляет 80 В/м.

Определенную опасность представляют электромагнитные излучения сверхвысоких частот, которые способствуют повышенной утомляемости или, в зависимости от индивидуальных особенностей организма, излишней возбудимости, а также при воздействии сверхвысокочастотного (СВЧ) излучения на глаза, развитию катаракты.

Таблица 22

Санитарно-защитные зоны радио- и телевизионных станций

Тип объекта

Диапазоны частот

Размер санитарно-защитной зоны, м

Длинноволновые радиостанции (ДВ)

30-300 кГц

100-1000

Средневолновые радиостанции (СВ)

300-3000 кГц

200-1000

Коротковолновые радиостанции (KB)

3-30 МГц

50-700

Телевизионные и  УКВ радиостанции

30-1000 МГц

25-800

 

Радиационное загрязнение

Биосфера формировалась вместе с ним и развивается под постоянным действием ионизирующей радиации. Естественный фон ее определялся, прежде всего, за счет рассеянных в горных породах, почвах, воде и воздухе радиоактивных химических элементов (уран, торий, радий и радон), а также космическим излучением. На протяжении миллионов лет радиоактивный фон не менялся, а дозы, получаемые биологическими объектами, не вызывали серьезных последствий. Однако, в последние несколько десятков лет поток естественных радионуклидов в биосфере стал намного интенсивнее. Кроме естественных, в окружающей среде появились антропические источники ионизирующих излучений - радиоактивные отходы атомных станций и радиоактивные выпадения от испытаний ядерного оружия, штатных и аварийных выбросов атомных электростанций.

Рисунок 23.1 - Факторы радиоактивного загрязнения

Установлено (О. М. Храмченкова, В. В. Валетов, В. Е. Шевчук и др., 1999), что любой живой объект при определенной дозе облучения погибает. Однако дозы облучений, приводящие к гибели разных объектов, различаются в очень широких пределах. Так, дозы фонового излучения, вызывающие 50% гибели организмов в облученной популяции, составляют: для обезьян 2,5-6 Гр., крыс 7-9, кроликов 9-10, птиц, рыб 8-20, насекомых 10-100, растений 10-1500, простейших 1000-3000 Гр. Каждому биологическому виду свойственна своя мера чувствительности к действию ионизирующей радиации, которая характеризует его радиочувствительность. Степень радиочувствительности сильно варьирует в пределах одного вида (индивидуальная радиочувствительность), а для определенного индивидуума зависит также от возраста и пола, даже в одном организме различные клетки и ткани сильно различаются по радиочувствительности. Энергия ионизирующего излучения при прохождении через биологическую ткань передается атомам и молекулам, что приводит к образованию ионов и возбужденных молекул. Это первый физический этап формирования биологического ответа клетки на лучевое воздействие. Следующий этап называется химическим. Образующиеся радикалы, окислители обладают высокой химической активностью, вступают в химические реакции с молекулами белка, ферментов и других структурных элементов биологической ткани, что приводит к изменению биологических процессов в организме. В результате нарушаются обменные процессы, подавляется активность ферментных систем, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму, - токсины. Это приводит к нарушению жизнедеятельности отдельных систем или организма в целом. Индуцированные свободными радикалами химические реакции вовлекают в этот процесс многие сотни и тысячи молекул, не затронутых излучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты.

Источники радиации и ситуация в России:

) Добыча и переработка радиоактивного минерального сырья

Из всего уранопроизводящего комплекса добыча и переработка урановых руд дает самый большой объем радиоактивных отходов. Специфическая особенность уранового и ториевого производства - наличие во всех видах отходов радионуклидов с большим периодом полураспада. В результате ветровой эрозии происходит сдувание твердых продуктов распада постоянно выделяющегося радона и перенос этого материала на значительные расстояния. Дополнительный источник загрязнения окружающей среды - жидкие отходы, к которым относятся шахтные воды, насыщенные радионуклидами.


Рис. 5.23. Пример ореола загрязнения подземных вод ураном в районе хвостохранилища. Естественная объемная активность воды 0.3 Бк/л: a - план; б - вертикальный разрез.

Другим звеном уранового производства являются обогатительные предприятия и заводы по гидрометаллургической переработке радиоактивных руд, где главный вид отходов - хвосты переработки рудной массы, насыщенные радиоактивными жидкостями. Весь этот материал удаляется в намывные хвостохранилища, которые являются неотъемлемой частью гидрометаллургического производства урана и тория и главным источником местного загрязнения окружающей среды радионуклидами.

) Уголь как источник естественной радиации

Уголь всегда содержит природные радиоактивные вещества уранового и актиноуранового рядов (238U и продукты его распада 234U, 226Ra, 222Rn, 210Pb, 210Po и т.д.; 235U и продукты его распада 219Rn и т.д.), ториевого ряда (232Th и продукты его распада 220Rn, 216Po), а также долгоживущий радиоактивный изотоп 40K. Таким образом, естественная радиоактивность угля формируется за счет природных радионуклидов. Уран в окислительных условиях земной поверхности, как правило, присутствует в виде хорошо растворимых соединений, и поэтому значительно более широко рассеян, чем торий, хотя среднее содержание урана в земной коре почти на порядок ниже, чем тория.
 Отметим, что торий и калий обычно связываются с неорганической фракцией, в то время как уран имеет тенденцию к связи с органикой, выбрасываемой в атмосферу с парогазовой фракцией, и концентрируется в аэрозолях.

) Ядерная энергетика

По состоянию на 2009 год в мире действовало 437 энергетических ядерных реактора, генерирующих почти 16 процентов мировой электроэнергии. Для обеспечения этих АЭС ядерным топливом необходимо ежегодно почти 4000 т природного урана.

Другой источник родионуклидов, попадающих в окружающую среду от функционирующих АЭС, - дебалансная и техническая вода. ТВЭЛы, находящиеся в активной зоне реактора, часто деформируются, и продукты деления попадают в теплоноситель. Дополнительным источником радиации в теплоносителе являются РН, образующиеся в результате облучения материалов реактора нейтронами. Поэтому периодически вода первого контура обновляется и очищается от РН.

Чтобы не произошло загрязнение окружающей среды, вода всех технологических контуров АЭС включается в систему оборотного водоснабжения. Тем не менее, часть жидких стоков сбрасывают в водоем-охладитель, имеющийся при каждой АЭС. Этот водоем является слабопроточным бассейном (чаще всего это искусственное водохранилище), поэтому сброс в него жидкостей, содержащих даже малое количество радионуклидов, может привести к опасной их концентрации. Сброс жидких радиоактивных отходов в водоемы-охладители категорически запрещен Санитарными правилами. В них можно направлять только жидкости, в которых концентрация радиоизотопов не превышает допустимые нормы.

) Тепловые электростанции

В радиационном отношении гораздо более опасны тепловые электростанции, поскольку сжигаемые на них уголь, торф и газ содержат природные радионуклиды семейств урана и тория. Средние индивидуальные дозы облучения в районе расположения тепловых электростанций мощностью 1 ГВт/год составляют от 6 до 60 мкЗв/год, а от выбросов АЭС - от 0.004 до 0.13 мкЗв/год. Таким образом, АЭС при нормальной их эксплуатации являются экологически более чистыми, чем тепловые электростанции.

Кроме дымовых газов, к основным источникам поступления радионуклидов в окружающую среду при сжигании угля на электростанции относят вынос частиц угля с открытых площадок углехранилищ (углеунос) и золоотвал. При сгорании большая часть минеральной фракции угля плавится и образует стекловидный зольный остаток, значительная доля которого остается в виде шлака. Тяжелые частицы при этом попадают в золу, однако наиболее легкая часть золы, так называемая «летучая зола», вместе с потоком газов уносится в трубу электростанции. Удельная эффективность золы-уноса повышается с увеличением ее дисперсности. Высокодисперсная зола практически не улавливается оборудованием по очистке газов ТЭС, поэтому дымовые газы являются основным источником загрязнения от действия электростанций.

) Полигоны для испытания ядерного оружия

Официально известны четыре ядерных полигона, принадлежащие сверхдержавам: Невада (США, Великобритания), Новая Земля (Россия), Моруроа (Франция), Лобнор (Китай). Кроме того, в СССР интенсивно использовался Семипалатинский полигон, который в настоящее время не функционирует. Именно в этих пунктах произведена основная масса испытательных взрывов ядерных и термоядерных зарядов. Их насчитывается 2077 (по другим источникам - 1900), из которых 1090 принадлежит США, 715 - СССР, 190 - Франции, 42 - Великобритании, 40 - Китаю.
 В результате испытаний ядерного оружия в окружающую среду выброшено около 30 млн. кюри 137Cs и 20 млн. кюри 90Sr. В шестидесятые годы в биосферу попало около 5 т 239Pu. Все это привело к мощной вспышке глобального радиационного фона. В настоящее время большая часть радионуклидов, выброшенных в атмосферу в результате ядерных испытаний, осела на поверхность Земли и смыта в океаны.

Трагедия ядерных полигонов заключается не только в том, что обширные территории превращены атомными взрывами в «мертвые зоны», которые в обозримом будущем не могут быть обустроены человеком. Площади полигонов часто используются как пункты захоронения РАО. В России это особенно это касается архипелага Новая Земля, который вместе с прилегающими акваториями Северного Ледовитого океана превращен в гигантский могильник отработанных реакторов и других частей атомных кораблей. У Новой Земли затоплены многие тысячи контейнеров с жидкими и твердыми РАО и компонентами отработанных ядерных устройств

) Ядерные взрывы в мирных целях

Ядерные взрывы производились не только на всем известных полигонах. Существовало более сотни других испытательных пунктов, информация о которых в последние годы все больше проникает в литературу. В СССР существовала Программа «Ядерные взрывы для народного хозяйства». Начало ее реализации относится к 1965 г.

В рамках этой программы в СССР с 1965 по 1988 годы было проведено 124 промышленных ядерных взрыва (рис.5.28) с подрывом 135 зарядов. Из них 130 зарядов взорваны в скважинах, 4 - в штольнях и один заряд - в шахте. Из общего числа этих подземных ядерных взрывов 119 были камуфлетными (т.е. без выброса радиоактивных веществ в атмосферу) и 5 - экскавационными (т.е. с выбросом грунта, а, следовательно, и части радионуклидов). Камуфлетные взрывы преследовали разные цели. В частности, глубинное сейсмическое зондирование земной коры и литосферы, создание подземных резервуаров для хранения нефтепродуктов, захоронение глубоко под землей опасных химических веществ - отходов нефтехимического производства, предупреждение внезапных выбросов газа и угольной пыли в шахтах, создание плотин, гашение горящих газовых факелов и пр. При производстве камуфлетных взрывов выброса радионуклидов на дневную поверхность и в атмосферу не происходило. При экскавационных взрывах и взрывах для рыхления грунта происходил выход значительного количества радиоактивных продуктов в атмосферу с образованием радиоактивного облака и последующим разносом радионуклидов на большие расстояния. Объекты подземных ядерных взрывов долгоживущие. Они не могут быть уничтожены и являются потенциально опасными источниками радиации, долгосрочные прогнозы поведения которых пока отсутствуют.

) Загрязнение морей атомными кораблями

Одной из трудно решаемых проблем атомного флота являются жидкие радиоактивные отходы - отработанная вода, используемая для охлаждения реакторов. Ее просто сливают в моря Северного Ледовитого океана, а также в Охотское и Японское моря. Опасными в радиационном отношении являются все базы подводных лодок, места переоборудования и ликвидации боевых ракет атомных подводных лодок.

Срок эксплуатации подводных лодок составляет 20-30 лет, после чего они должны быть утилизированы, а ядерные реакторы и детали с наведенной радиоактивностью захоронены по действующим правилам и инструкциям, что нередко не соблюдается по причине недостатка денежных средств или по халатности. В результате во всех морях Северного Ледовитого океана имеются затопленные реакторы подводных лодок даже с невыгруженным ядерным топливом .

Корабли атомного флота по разным причинам терпят аварии и погружаются на дно океана вместе с реакторами и ядерными зарядами.

Таблица 5.6. Некоторые аварии на морских и воздушных судах и космических аппаратах

Аварийная ситуация

Дата

Место

Оценка радиоактивности

АПЛ «Трэшер»

10.04.1963

Атлантический океан, глубина 2590 м

1147 ТБк в атомном реакторе

ИСЗ SNAP-9A

21.04.1964

Над Индийским океаном

629 ТБк 238Рu

Катастрофа самолета с ядерным оружием

1966

Паломарес, юго-восточное побережье Испании

<1.37 ТБк плутония

Катастрофа самолета с ядерным оружием

январь 1968

Туле, Гренландия

Около 1 ТБк плутония

АПЛ «Скорпион»

27.05.1968

Атлантический океан, глубина >3000 м

1295 ТБк (1 реактор + вооружение)

АПЛ К-8

11.04.1970

Бискайский залив, глубина 4000 м

9000 ТБк (2 реактора + вооружение)

ИСЗ «Космос-954»

24.01.1978

Канада

3.11 TBK90Sr, 181 ТБк 131I, 3.18 ТБк 137Cs

АПЛ K-2I9

06.10.1986

Район Бермудских островов, глубина 5500 м

9000 ТБк (2 реактора + вооружение)

АПЛ К-278 «Комсомолец»

07.04.1989

Норвежское море, 1685 м

3600 ТБк (1 реактор +  2 торпеды


) Радиоактивные отходы

По физическому состоянию радиоактивные отходы (РАО) подразделяются на твердые, жидкие и газообразные. Жидкие и твердые радиоактивные отходы подразделяются по удельной активности на 3 категории: низкоактивные, среднеактивные и высокоактивные.

Хранилища радиоактивных отходов размещаются глубоко под землей (не менее 300 м), причем, за ними устанавливается постоянное наблюдение, так как радионуклиды выделяют большое количество тепла. Подземные хранилища РАО должны быть долговременными, рассчитанными на сотни и тысячи лет. Для облегчения захоронения и надежности последнего жидкие высокоактивные РАО превращают в твердые инертные вещества. В настоящее время основными методами переработки жидких РАО являются цементирование и остеклование с последующим заключением в стальные контейнеры, которые хранятся под землей на глубине нескольких сотен метров.

Жидкие РАО Военно-Морского флота хранятся в береговых и плавучих емкостях в регионах, где базируются корабли с атомными двигателями. Годовое поступление таких РАО около 1300 м3. Они перерабатываются двумя техническими транспортными судами (один на Северном, другой на Тихоокеанском флотах). Кроме того, в связи с интенсификацией применения ионизирующего излучения в хозяйственной деятельности человека, с каждым годом возрастает объем отработанных радиоактивных источников, поступающих с предприятий и учреждений, использующих в своей работе радиоизотопы. Большая часть таких предприятий находится в Москве (около 1000), областных и республиканских центрах. Эта категория РАО утилизируется через централизованную систему территориальных организаций

Последствия

Влияние запусков ракет на поверхность планеты во многом зависит от массы стартующих ракет, частоты запусков, т.е. грузопотока на орбиту. Последний составляет около 2200, 700 и 600 тонн в год для космодромов Байконур, мыс Канаверал и Плесецк соответственно.
 Высота самой большой ракеты «Аполлон» (именно с ее помощью были осуществлены пилотируемые полеты на Луну) превышала 100 метров, а масса была близка к 3 тыс. тонн. В настоящее время самая крупная ракета имеет массу около 2 тыс. тонн и высоту около 50 м. Такая ракета в секунду сжигает почти 10 т топлива и выбрасывает в атмосферу далеко не безвредные продукты сгорания. Самые «маленькие» космические ракеты имеют массу около 100 т. Масса топлива в ракетах всех типов - почти 90% массы ракеты.
 Падение первых ступеней ракеты. Все ракеты имеют разное число ступеней - от 2 до 6. Нулевая и первая ступени ракеты-носителя работают около 1-2 минут. После сгорания топлива ступени отстреливаются и падают сравнительно недалеко (на расстоянии около 100 км) от места старта ракеты. Вторые и третьи ступени падают на удалениях около 800 и 2500 км соответственно. Для запуска ракет отчуждается участок земной поверхности площадью от 1.5 до 5 тыс. км2. Опасность представляют как сами ступени ракет, так и особенно остатки топлива, нередко токсичного. Только в странах СНГ остаткам топлива от ракет «Протон», «Циклон» и «Космос» загрязнено около 10 тыс. км2 поверхности земли

Влияние на погоду и климат. До последнего времени такое влияние аргументированно отрицалось. Сейчас отдельные специалисты, проведя наблюдения, их статистическую обработку и компьютерное моделирование, пришли к выводу, что запуски всего 60 аппаратов типа «Спейс Шаттл» в год должны привести к изменению метеоусловий по обе стороны Атлантики. Влияние запусков ракет на Байконуре является более локальным. Они обычно сопровождаются усилением осадков. Так ли это - покажет будущее. Если подобное влияние существует, то оно, скорее всего, связано со спусковыми эффектами и процессами самоорганизации в атмосфере. Кроме рассмотренного воздействия, запуски КА сопровождаются тепловым, газодинамическим, электромагнитным воздействием струи, динамическим воздействием корпуса ракеты и другими эффектами.
 Разрушение озоносферы происходит за счет выбросов хлора и оксидов азота. При стартах ракет ежегодно в атмосферу инжектируется около 5 тыс. т хлора и 100 т оксидов азота. Исследования показали, что твердотельные ракеты наносят больший вред озоносфере, чем жидкостные. К счастью, пока что запуски КА способны разрушать озонсферу лишь вблизи места пролета ракеты, радиус возмущенной зоны не превышает нескольких километров. Глобальное влияние запусков при нынешней их интенсивности мало.
 Влияние космической деятельности на геокосмос (примерно от 100 до 36 000 км). Благодаря сильной разреженности геокосмос значительно более уязвим, чем приземная атмосфера. Космическая деятельность влияет на экологию геокосмоса по нескольким каналам. К ним относятся выбросы больших объемов химических веществ, часто отсутствующих в естественных условиях, инжекция акустической, электромагнитной и тепловой энергии, засорение околоземной среды фрагментами ракет и космических аппаратов.
 

Воздействие ионизирующей радиации на человека

Последствия облучения

100 000

Смерть через несколько минут

10 000

Смерть через несколько часов

1 000

Смерть через несколько дней

700

В 90% случаев смертельный исход в ближайшие недели

200

В 10% случаев смертельный исход в последующие месяцы

100

Смертельных исходов нет, но значительно увеличивается число раковых заболеваний. Полная стерилизация у женщин, на 2-3 года у мужчин

Чувствительность живых существ к облучению тем больше, чем выше уровень их развития и чем сложнее их организм.
Установлено, что для человека лучевая доза через три недели после облучения равняется примерно 400 рад. Чувствительность к облучению зависит от возраста облучаемой особи. Молодые животные и тем более эмбрионы более уязвимы, чем взрослые особи. Кроветворный костный мозг молодых особей позвоночных обладает наиболее высокой чувствительностью к облучению, так как в этих тканях протекает процесс активного клеточного строения. В то время как нейроны, которые не делятся у взрослых особей, менее чувствительны к облучению.

Охрана окружающей среды от радиоактивных загрязнений

обеспечивается следующими мерами:

• использованием совершенной технологии производства, которая сводит к минимуму количество образующихся радиоактивных отходов и предупреждает их утечку (герметизация процессов, связанных с образованием радиоактивных газов и аэрозолей, применение оборотного цикла водоснабжения и т.д.);

• методами обезвреживания, централизованного сбора и хранения радиоактивных отходов;

• организацией санитарно-защитных зон и планировочными мероприятиями.

Вокруг радиационных объектов устанавливаются особые территории - санитарно-защитная зона (СЗЗ) и зона наблюдения (ЗН).

Санитарно-защитная зона - территория вокруг предприятия, на которой запрещается размещение жилых зданий, детских учреждений, а также промышленных и подсобных сооружений, не относящихся к предприятию, для которого установлена эта зона. СЗЗ является защитным барьером, обеспечивающим безопасность населения при эксплуатации радиационного объекта («Санитарнозащитные зоны и зоны наблюдения радиационных объектов: условия эксплуатации и обоснование границ» - СП 2.6.1.2216-07).

Зона наблюдения - территория, граничащая с СЗЗ, на которой уровень облучения проживающего населения за счет радиоактив- ных выбросов и сбросов предприятия (учреждения) может достигать установленного предела, что диктует необходимость проведения в ней контроля радиационной обстановки.

В настоящее время отделы и группы радиационной гигиены проводят большую работу по изучению влияния естественной активности на окружающую среду (контроль за строительными материалами, содержанием радона в воздухе жилых помещений, оценка радиационной обстановки на строительных площадках и т.д.).

Воздействие радиации на организм

Проникновение радиоактивных веществ в организм происходит тремя путями: через желудочно-кишечный тракт (с пищей), через дыхательные пути (с воздухом) и через кожу.

Наибольшую опасность для человека представляют потоки частиц (видов альфа, бета и гамма). Они имеют способность «перепрограммировать» весь организм, вызывая в нём опасные, зачастую необратимые изменения.

Заражённый радиацией человек рискует получить дозу облучения, способную нарушить функции всех жизненно важных органов: в первую очередь, желудочно-кишечного тракта, нервной системы и крови. Заражение происходит из-за того, что обладающие огромной энергией микрочастицы начинают воздействовать на нормальные клетки человека, изменяя их структуру, вызывая мутации, патологии. А если клетки находятся в процессе развития (как у ребёнка), радиация воздействует на них особенно активно.

Лучевая болезнь с симптомами различной тяжести - наиболее частое последствие ионизирующего излучения. В организм попадают различные инфекции, могут развиться катаракта, бесплодие, злокачественные опухоли. Наиболее подвержены действию радиации так называемые «11 проблемных мест» организма: костный мозг, легкие, язык, надпочечники, поверхность ближайшей костной ткани, слюнные железы, хрусталик глаза, гипофиз, молочные, половые и щитовидная железы.

Радионуклид цезий-137 - один из самых обычных в выбросах АЭС, попадая в организм человека, повышает риск получения таких заболеваний, как саркома. Стронций-90 - может замещать кальций в твердых тканях и грудном молоке, что может привести к развитию рака крови (лейкемии), раку кости и раку груди. А малые дозы облучения криптоном-85 повышают вероятность заболевания раком кожи.

«Вторичное загрязнение» - еще один путь распространения «ядерной заразы». Уже давно стали обычным явлением скандалы с изъятием зараженной сельскохозяйственной продукции, грибов и ягод на российских рынках.

К сожалению, за все время существования ядерной отрасли всеобъемлющих исследований влияния «мирного» атома на природу и человека не проводилось ни разу. Однако даже те неполные данные, которыми мы располагаем, позволяют утверждать: «мирный» атом - это мина замедленного действия.

Радиоактивное загрязнение окружающей среды <http://www.grandars.ru/shkola/bezopasnost-zhiznedeyatelnosti/zagryaznenie-okruzhayushchey-sredy.html> является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению. Основными специфическими явлениями и факторами, обусловливающими экологические последствия при радиационных авариях и катастрофах, служат радиоактивные излучения из зоны аварии, а также из формирующегося при аварии и распространяющегося в приземном слое облака (облаков) загрязненного радионуклидами воздуха; радиоактивное загрязнение компонентов окружающей среды.

Воздушные массы, двигавшиеся 26 апреля 1986 г. на запад, 27 апреля на север и северо-запад, 28-29 апреля от северного направления повернули на восток, юго-восток и далее 30 апреля юг (на Киев).

Последующее длительное поступление радионуклидов в атмосферу происходило за счет горения графита в активной зоне реактора. Основной выброс радиоактивных продуктов продолжался в течение 10 суток. Однако истечение радиоактивных веществ из разрушенного реактора и формирование зон загрязнения продолжались в течение месяца. Долгосрочный характер воздействия радионуклидов определялся значительным периодом полураспада. Осаждение радиоактивного облака и формирование следа происходили длительное время. В течение этого времени изменялись метеорологические условия и след радиоактивного облака приобрел сложную конфигурацию. Фактически сформировались два радиоактивных следа: западный и северный. Наиболее тяжелые радионуклиды распространялись на запад, а основная масса более легких (йод и цезий), поднявшись выше 500-600 м (до 1,5 км), была перенесена на северо-запад.

В результате аварии около 5% радиоактивных продуктов, накопившихся за 3 года работы в реакторе, вышли за пределы промышленной площадки станции. Летучие изотопы цезия (134 и 137) распространились на огромные расстояния (значительное количество по всей Европе) и были обнаружены в большинстве стран и океанах Северного полушария. Чернобыльская авария привела к радиоактивному загрязнению территорий 17 стран Европы общей площадью 207,5 тыс. км2, с площадью загрязнения цезием выше 1 Кю/км2.

Если выпадения по всей Европе принять за 100%, то из них на территорию России пришлось 30%, Белоруссии - 23%, Украины - 19%, Финляндии - 5%, Швеции - 4,5%, Норвегии - 3,1%. На территориях России, Белоруссии и Украины в качестве нижней границы зон радиоактивного загрязнения был принят уровень загрязнения 1 Кю/км2.

Сразу после аварии наибольшую опасность для населения представляли радиоактивные изотопы йода. Максимальное содержание йода-131 в молоке и растительности наблюдалось с 28 апреля по 9 мая 1986 г. Однако в этот период “йодовой опасности” защитные мероприятия почти не проводились.

В дальнейшем радиационную обстановку определяли долгоживущие радионуклиды. С июня 1986 г. радиационное воздействие формировалось в основном за счет радиоактивных изотопов цезия, а в некоторых районах Украины и Белоруссии также и стронция. Наиболее интенсивные выпадения цезия характерны для центральной 30-кило-метровый зоны вокруг Чернобыльской АЭС. Другая сильно загрязненная зона - это некоторые районы Гомельской и Могилевской областей Белоруссии и Брянской области России, которые расположены примерно в 200 км от АЭС. Еще одна, северо-восточная зона расположена в 500 км от АЭС, в нее входят некоторые районы Калужской, Тульской и Орловской областей. Из-за дождей выпадения цезия легли “пятнами”, поэтому даже на соседних территориях плотность загрязнения могла различаться в десятки раз. Осадки сыграли существенную роль в формировании выпадений - в зонах выпадения дождевых осадков загрязнение в 10 и более раз превышало выпадение в “сухих” местах. При этом в России выпадения были “размазаны” на достаточно большой территории, поэтому общая площадь территорий, загрязненных выше 1 Кю/км2, в России наибольшая. А в Белоруссии, где выпадения оказались более сконцентрированными, образовалась наибольшая по сравнению с другими странами площадь территорий, загрязненных свыше 40 Кю/км2. Плутоний-239 как тугоплавкий элемент не распространился в значительных количествах (превышающих допустимые значения в 0,1 Кю/км2) на большие расстояния. Его выпадения практически ограничились 30-километровой зоной. Однако эта зона площадью около 1 100 км2 (где и стронция-90 в большинстве случаев выпало более 10 Кю/км2) стала надолго непригодной для проживания человека и хозяйствования, так как период полураспада плутония-239 составляет 24,4 тыс. лет.

В России общая площадь радиоактивно загрязненных территорий с плотностью загрязнения выше 1 Кю/км2 по цезию-137 достигала 100 тыс. км2, а свыше 5 Кю/км2 - 30 тыс. км2. На загрязненных территориях оказалось 7 608 населенных пунктов, в которых проживало около 3 млн. человек. Вообще же радиоактивному загрязнению подверглись территории 16 областей и 3 республик России (Белгородской, Брянской, Воронежской, Калужской, Курской, Липецкой, Ленинградской, Нижегородской, Орловской, Пензенской, Рязанской, Саратовской, Смоленской, Тамбовской, Тульской, Ульяновской, Мордовии, Татарстана, Чувашии).

Радиоактивное загрязнение затронуло более 2 млн. га сельхозугодий и около 1 млн. га лесных земель. Территория с плотностью загрязнения 15 Кю/км2 по цезию-137, а также радиоактивные водоемы находятся только в Брянской области, в которой прогнозируется исчезновение загрязнения примерно через 100 лет после аварии. При распространении радионуклидов транспортирующей средой является воздух или вода, а роль концентрирующей и депонирующей среды выполняют почва и донные отложения. Территории радиоактивного загрязнения - это, главным образом, сельскохозяйственные районы. Это значит, что радионуклиды могут попасть с продуктами питания в организм человека. Радиоактивное загрязнение водоемов, как правило, представляет опасность лишь в первые месяцы после аварии. Наиболее доступны для усвоения растениями “свежие” радионуклиды при поступлении аэральным путем и в начальный период пребывания в почве (например, для цезия-137 заметно уменьшение поступления в растения с течением времени, т. е. при “старении” радионуклида).

Сельскохозяйственная продукция (прежде всего молоко) при отсутствии соответствующих запретов на ее употребление стала главным источником облучения населения радиоактивным йодом в первый месяц после аварии. Местные продукты питания вносили существенный вклад в дозы облучения и во все последующие годы. В настоящее время, спустя 20 лет, потребление продукции подсобных хозяйств и даров леса дает основной вклад в дозу облучения населения. Принято считать, что 85% суммарной прогнозируемой дозы внутреннего облучения на последующие 50 лет после аварии составляет доза внутреннего облучения, обусловленная потреблением продуктов питания, которые выращены на загрязненной территории, и лишь 15% падает на дозу внешнего облучения. В результате радиоактивного загрязнения компонентов окружающей среды происходят включение радионуклидов в биомассу, их биологическое накопление с последующим негативным воздействием на физиологию организмов, репродуктивные функции и т. д.

На любом этапе получения продукции и приготовления пищи можно уменьшить поступление радионуклидов в организм человека. Если тщательно мыть зелень, овощи, ягоды, грибы и другие продукты, радионуклиды не будут попадать в организм с частичками почвы. Эффективные пути уменьшения поступления цезия из почвы в растения - глубокая перепашка (делает цезий недоступным для корней растений); внесение минеральных удобрений (снижает переход цезия из почвы в растение); подбор выращиваемых культур (замена на виды, накапливающие цезий в меньшей степени). Уменьшить поступление цезия в продукты животноводства можно подбором кормовых культур и использованием специальных пищевых добавок. Сократить содержание цезия в продуктах питания можно различными способами их переработки и приготовления. Цезий растворим в воде, поэтому за счет вымачивания и варки его содержание уменьшается. Если овощи, мясо, рыбу варить 5-10 минут, то 30-60% цезия перейдет в отвар, который затем стоит слить. Квашение, маринование, соление снижает содержание цезия на 20%. То же относится и к грибам. Их очистка от остатков почвы и мха, вымачивание в солевом растворе и последующее кипячение в течение 30-45 минут с добавлением уксуса или лимонной кислоты (воду сменить 2-3 раза) позволяют снизить содержание цезия до 20 раз. У моркови и свеклы цезий накапливается в верхней части плода, если ее срезать на 10-15 мм, его содержание снизится в 15-20 раз. У капусты цезий сосредоточен в верхних листьях, удаление которых уменьшит его содержание до 40 раз. При переработке молока на сливки, творог, сметану содержание цезия снижается в 4-6 раз, на сыр, сливочное масло - в 8-10 раз, на топленое масло - в 90-100 раз.

Радиационная обстановка зависит не только от периода полураспада (для йода-131 - 8 дней, цезия-137 - 30 лет). Со временем радиоактивный цезий уходит в нижние слои почвы и становится менее доступным для растений. Одновременно снижается и мощность дозы над поверхностью земли. Скорость этих процессов оценивается эффективным периодом полураспада. Для цезия-137 он составляет около 25 лет в лесных экосистемах, 10-15 лет на лугах и пашнях, 5-8 лет в населенных пунктах. Поэтому радиационная обстановка улучшается быстрее, чем происходит естественный расход радиоактивных элементов. С течением времени плотность загрязнения на всех территориях уменьшается, а их общая площадь сокращается.

Радиационная обстановка также улучшалась в результате проведения защитных мероприятий. Для предотвращения разноса пыли асфальтировались дороги и накрывались колодцы; перекрывались крыши жилых домов и общественных зданий, где в результате выпадений скапливались радионуклиды; местами снимался почвенный покров; в сельском хозяйстве проводились специальные мероприятия для снижения загрязнения сельскохозяйственной продукции.

Заключение

Охрана природы - задача нашего века, проблема, ставшая социальной. Снова и снова мы слышим об опасности, грозящей окружающей среде, но до сих пор многие из нас считают их неприятным, но неизбежным порождением цивилизации и полагают, что мы ещё успеем справиться со всеми выявившимися затруднениями.

Однако воздействие человека на окружающую среду приняло угрожающие масштабы. Чтобы в корне улучшить положение, понадобятся целенаправленные и продуманные действия. Ответственная и действенная политика по отношению к окружающей среде будет возможна лишь в том случае, если мы накопим надёжные данные о современном состоянии среды, обоснованные знания о взаимодействии важных экологических факторов, если разработает новые методы уменьшения и предотвращения вреда, наносимого Природе Человеком.


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!