Тепловая обработка строительных материалов и изделий

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Строительство
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    449,16 Кб
  • Опубликовано:
    2015-03-16
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Тепловая обработка строительных материалов и изделий














КУРСОВОЙ ПРОЕКТ

По дисциплине «Теплотехника и теплотехническое оборудование»

Введение

Тепловую обработку строительных материалов и изделий целесообразно рассматривать в двух аспектах. С одной стороны следует проанализировать пути превращения сырьевых материалов и готовую продукцию или полуфабрикат в процессе тепловой обработки. Эта задача сугубо технологическая. С другой стороны необходимо рассмотреть работу тепловых установок (пропарочных, сушильных, обжиговых), которая определяется законами теплотехники.

При тепловой обработке в материалах и изделиях происходят физико-химические превращения, формируется структура, идут процессы тепло и массопереноса, возникает напряженное состояние. Взаимозависимость и сложность этих явлений предопределили на начальных этапах эмпирический характер развития данной отрасли науки. Постепенно накапливались экспериментальные данные об этих явлениях, причем из-за их сложности в основном изучалась динамика качественных изменений отдельных процессов. Результаты исследований с использованием законов физики, химии и прикладных наук позволили создать предпосылки для математического описания процессов с целью создания теоретических основ, без которых невозможно определить пути оптимизации тепловой обработки

При тепловой обработке в материалах и изделиях происходят физико-химические превращения, формируется структура, идут процессы тепло и массопереноса, возникает напряженное состояние. Взаимозависимость и сложность этих явлений предопределили на начальных этапах эмпирический характер развития данной отрасли науки. Постепенно накапливались экспериментальные данные об этих явлениях, причем из-за их сложности в основном изучалась динамика качественных изменений отдельных процессов. Результаты исследований с использованием законов физики, химии и прикладных наук позволили создать предпосылки для математического описания процессов с целью создания теоретических основ, без которых невозможно определить пути оптимизации тепловой обработки. Создание прогрессивных технологий с минимальными затратами материальных и энергетических средств - одна из главных задач всех отраслей народного хозяйства, в том числе и строительной индустрии, к которой относится и производство строительных материалов и изделий. Одной из основных составных частей технологии строительной индустрии является тепловая обработка, на которую затрачивается около 30 % стоимости производства строительных материалов и изделии. Кроме того, тепловая обработка потребляет около 80 % от расходуемых на весь производственный цикл топливно-энергетических ресурсов. Таким образом, создание экономичных тепловых процессов, позволяющих получать изделия отличного качества с минимальными затратами топлива и электроэнергии, даст возможность существенно уменьшить капиталовложения в сферу строительства. Для создания таких тепловых процессов необходимы глубокие знания в области тепловой обработки строительных материалов и изделии, устройства тепловых установок, их конструирования и эксплуатации.

Рассматривая в целом процессы, проходящие в материалах и изделиях при тепловой обработке, необходимо помнить, что они являются следствием процессов, проходящих в тепловых установках. Изучение этой достаточно сложной взаимосвязи, порой еще мало исследованной, является главной задачей, которую приходится решать нашим ученым.

Первые попытки проанализировать работу тепловых установок были сделаны еще М. В. Ломоносовым и успешно продолжены В. Е. Грум-Гржимайло, который создал научную теорию, объясняющую работу печей и сушил. Д. И. Менделеев предложил формулу для определения теплотворной способности топлива.

Наука о процессах, проходящих в материалах при тепловой обработке, начала развиваться значительно позднее. Например, положения о кинетике процесса сушки были выдвинуты в 20-х годах П. С. Косовичем и А. В. Лебедевым применительно к испарению влаги из почвы. Представления о формах свяли влаги с материалом, определяющие сушку, были впервые сформулированы акад. П. А. Ре-Линдером. Проф. Л. К. Рамзнн также впервые и 1918 г. предложил 1 - d - диаграмму влажного воздуха и создал методику расчета сушильных установок.

Большое значение для развития науки о сушильных процессах имели работы А. П. Ворошилова, М. И. Лурье, М. Ф. Казанского, П. Г. Ромапкова и А. В. Лыкова. Процессы, проходящие в материалах при обжиге, описаны в трудах Д. С. Беляпкина, П. П. Будни-кова, К. А. Нохратяна, О. П. Мчедлова-Петросяна н ряда других ученых. Эта область науки является пока еще наименее изученной.

Большое значение для производства сборного бетона и железобетона имеют исследования, связанные с тспловлажностной его обработкой, получившие широкое развитие в 50-е годы. Ряд основных положений об этих процессах сформулированы были несколько ранее А. В. Волженским и П. И. Боженовым, первым применительно к тепловой обработке силикатного, а вторым - автоклавного бетонов. С дальнейшим развитием представлений о процессах, проходящих при тепловлажностной обработке связаны труды С. А. Миронова, Л. А. Малининой, А. Д. Дмитровнча, И. Б. Заседателева, Н, Б. Марьямова и других ученых.

Накопленные знания о взаимосвязи тепловых процессов, проходящих в установках, с развивающимися в материалах, обширный экспериментальный материал, обобщенный на основе законов физики, химии и математики, создают основу для перехода к созданию моделей этих взаимосвязанных процессов и следовательно, к решению конкретных задач по оптимизации тепловой обработки.

При производстве строительных изделий, деталей и материалов почти во всех случаях для перевода сырья в новое качество - готовую продукцию применяют тепловую обработку. В большинстве случаев тепловая обработка дает возможность придать сырью новые, качественно отличные свойства, необходимые в строительстве. Такой процесс происходит за счет физических и физико-химических превращений в обрабатываемом материале, течение которых зависит от воздействия тепла.

Для теплового воздействия материал помещают в установку, которую в общем случае называют тепловой установкой. Различные физические и физико-химические превращения в материале требуют различного теплового воздействия. Поэтому в каждой тепловой установке создают свой необходимый для обработки продукции тепловой режим. Под тепловым режимом понимают совокупность условий теплового и массообменного воздействия на материал, как-то: изменение температуры среды, скорость течения газов или жидкости, омывающих материал, концентрацию газов, их давление. Следовательно, тепловые режимы представляют собой совокупность тепловых, массообмеиных и гидродинамических процессов, происходящих в тепловой установке.

Тепловой режим установки будет воздействовать на сырье и за счет физических и физико-химических превращений в нем оно превратится в готовую продукцию. Очевидно, изучая данную дисциплину, необходимо выяснить, как различные тепловые режимы воздействуют на разные материалы, какие процессы происходят в материалах при тепловой обработке, а также научиться определять наиболее эффективные режимы.

1. Характеристика материалов (с расчетом состава бетона) и габаритные размеры изделий

.1 Характеристика материалов

Легкие бетоны на пористых заполнителях стали основным материалом ограждающих конструкций и особенно стеновых наружных панелей и блоков.

Керамзитобетон представляет собой легкий бетон на пористом заполнителе. Керамзит- это ячеистый материал в виде гравия или щебня. Сырьем для его производства служат суглинки и глина, содержащие окислы железа и органические примеси. Керамзит используют как заполнитель для легкого бетона и железобетона, а также теплоизоляционного материала в виде засыпок.

Легкобетонные изделия широко применяются в жилищном, промышленном и сельскохозяйственном строительстве, а также отчасти в мостостроении.

Керамзитобетон наиболее распространённый вид лёгкого бетона, в котором крупным заполнителем является керамзит, а вяжущим - цемент (реже строительный гипс, известь, и т.п.); в качестве мелкого заполнителя применяют пористый или плотный (например, кварцевый) песок.

По структуре (степени пористости) бетона различают плотный, крупнопористый (беспесчаный) и поризованный к/б.

В зависимости от назначения подразделяют на :

·    теплоизоляционный,

·        конструктивно-теплоизоляционный,

·        конструктивный.

Теплоизоляционный к/б различной структуры применяют в основном в качестве теплоизоляционного материала в слоистых ограждающих конструкциях зданий. Его плотность (в высушенном состоянии) от 350 до 600 кг/м3; прочность при сжатии от 0,5 до 2,5 МПа, коэффициент теплопроводности 0,11-0,17 вт/(м`К).

Конструктивно-теплоизоляционный к/б используют главным образом для однослойных стеновых панелей, крупных блоков и т.п. Его плотность 700-1200 кг/м3, прочность при сжатии 3,5-10 МПа, коэффициент теплопроводности 0,21-0,46 вт/(м`К), морозостойкость 15-100 Мрз (от 15 до 100 циклов попеременного замораживания и оттаивания).

Конструктивный к/б, предназначенный для различных несущих конструкций зданий и инженерных сооружений (например, мостов), имеет плотность 1400-1900 кг/м3; прочность при сжатии 10- 50 МПа; морозостойкость до 500 Мрз. Использование конструктивного к/б (вместо обычного тяжёлого бетона) в крупноразмерных железобетонных конструкциях позволяет существенно снизить их массу и стоимость.

Для изготовления бетона следует применять портландцементы, соответствующие требованиям ГОСТ 10178-85 «Портландцемент и шлакопортландцемент. Технические условия» и ГОСТ 22266-94 «Цементы сульфатостойкие. Технические условия».

Марки цемента принимают в зависимости от класса бетона по табл. 2.1 согласно СНиП 5.01.23-83 «Типовые нормы расхода цемента для приготовления бетонов сборных и монолитных бетонных и железобетонных изделий и конструкций».

Применение цемента пониженных марок увеличивает его расход. Применение цемента повышенных марок не всегда приводит к его экономии.

При применении цемента высокой активности для бетонов низких классов следует вводить минеральные добавки тонкомолотых шлаков, золы ТЭС, активных минеральных добавок естественного происхождения.

Расход цемента не должен превышать типовую норму по СНиП 5.01.23-83.

Вид цемента для различных условий работы необходимо выбирать с учетом требований ГОСТ 23464-79 «Цементы. Классификация».

Таблица 1. Назначение марки цемента в зависимости от класса бетона

Проектный класс бетона

Марки цемента для тяжелого бетона при твердении в условиях


естественных

тепловой обработки при отпускной прочности бетона



70% проектной и менее

80-100% проектной


рекомендуемые

допустимые

рекомендуемые

допустимые

рекомендуемые

допустимые

В75

300

¾

300

-

-

-

В10

300

400

300

400

400

300,500

В15

400

300, 500

400

300, 500

400

500

В20

400

300, 600

400

300, 500

400

500

В25

400

500

400

500

500

400

В27,5

400

500

400

500

500

400

ВЗО

500

650, 600

500

550, 600

550

500, 600

В35

550

500, 600

650

500, 600

600

500, 550

В40

600

650, 600

600

550, 500

600

650

В45

600

550

600

550


-


Вода для затворения бетонной смеси должна соответствовать требованиям ГОСТ 23732-79 «Вода для бетонов и растворов. Технические условия».

Рекомендуется применять питьевую воду. Можно использовать технические оборотные и природные минерализованные воды с допустимым содержанием примесей.

Количество солей, ионов ,, взвешенных частиц не должно превышать значений, приведенных в табл. 2.2.

Таблица 2. Допустимое содержание примесей в воде

Назначение бетонов

Растворимые соли

Ионы

Взвешенные частицы





Для напряженных железобетонных конструкций, а также бетоны на глиноземистом цементе

2000

600

350

200

Для конструкций с напрягаемой арматурой, в том числе для водосбросных сооружений и зоны переменного уровня воды массивных сооружений

5000

2700

1200

200

Для неармированных конструкций, к которым не предъявляются требования по ограничению образования высолов

10000

2700

3500

300


Водородный показатель рН воды должен быть не менее 4 и не более 12,5.

Допускается не более 10 мг/л органических поверхностноактивных веществ, сахаров, фенолов.

Для улучшения свойств бетонной смеси, затвердевшего бетона, ускорения твердения бетона, замедления или ускорения сроков схватывания вводятся химические добавки, применение которых регламентируется.

.2 Подбор состава бетона

Расчёт лёгких бетонов ведётся расчётно-экспериментальным методом абсолютных объёмов.

Исходные данные:

Керамзитобетон М300 (B25);

Фракция 10-20мм;

Песок: ρн=1450 кг/м3; ρи=2450 кг/м3;

Цемент: ρн=1100 кг/м3; ρи=3100 кг/м3;

Керамзит: ρн=600 кг/м3; ρи=1100 кг/м3;

Rц=50 МПа;

Rb=30 МПа;

Мк=1,5 мм.

Расчет состава бетона выполняют в такой последовательности:

. Расход цемента принимаем из таблицы 4.13 [3] в зависимости от класса бетона, марки цемента, наибольшей крупности и прочности керамзитового гравия, удобоукладываемости бетонной смеси, с учётом поправочных коэффициентов, приведённых в табл. 4.14[3].

Ц=кг.

2. Определяем расход воды В, кг/м3, в зависимости от удобоукладываемости бетонной смеси, вида и крупности заполнителя ориентировочно по табл.4.15[3] или на основании предварительных испытаний.

В=220 л.

. Определяем расход керамзитового гравия К, кг/м3.

К=

где φ- объёмная концентрация керамзитового гравия; принимаем по таблице 4.16[3] в зависимости от расхода цемента, воды, плотности бетона, средней плотности зёрен гравии, водопотребности песка.

- средняя плотность гравия в цементом тесте, кг/л.

К=кг.

. Определяем расход плотного песка П, кг/м3.

П=

где - средняя плотность сухого бетона, кг/м3; =1800 кг/м3

Ц- расход цемента ,кг/м3;

К- расход керамзитового гравия, кг/м3.

П=кг

В результате проведенных расчетов получаем следующий ориентировочный номинальный состав бетона, кг/м3:

Цемент….........................................................414 кг;

Вода………......................................................220 кг;

Песок…………………………………………949кг;

Керамзит……………………………………..375 кг.

Плотность бетона

 кг/м3.

.3 Габаритные размеры изделий

Наружная стеновая панель.

Рис.1- Габаритные размеры наружной стеновой панели

2. Описание технологического процесса изготовления изделий

Прогрев изделий в пропарочных камерах осуществляестя конвективно со стороны открытой поверхности изделия и кондуктивно со стороны формы.

Основным назначением предварительного выдерживания изделий до начала тепловой обработки является создание благоприятных условий для развития процессов гидратации цементов и формирование начальной структуры бетона, способной воспринимать температурные напрямения без нарушений.

Оптимальная длительность предварительного выдерживания для различных бетонов не является постоянной, она зависит от активности цемента, подвижности бетона и температуры окружающей среды и находится в пределах 1-5ч. Чем выше марка цемента и бетона, а также чем выше температура окружающей среды и жесткость бетонной смеси, тем может быть короче время предварительного выдерживания. Введение химических добавок приводит к сокращению, а поверхностно активных добавок к увеличению длительности предварительного выдерживания.

При тепловой обработке под пригрузом, в закрытых формах, в малонапорных и индукционных камерах предварительного выдерживания целесообразно, а при применении разогретых бетонных смесей противопоказано.

Повышение температуры среды камеры со скоростью более 60 град в час не зависимо от начальной прочности бетона не рекомендуется.

При коротком предварительном выдерживании (до 1 ч.) температуру рекомендуется поднимать с постоянно возрастающей скоростью, например в первый час 10 - 15 град, во второй 15-25 град, в последующей 25-35 град и т. д. независимо от толщины изделия.

При техническом затруднении выполнении режимов с постоянно возрастающей скоростью подъема температуры среды камеры, рекомендуется применять режимы со ступенчатом подъемом температуры, например за1-1,5 ч подъем температуры до 30-40 град, выдерживание этой температуры в течении 1-2 часа, а затем интенсивный подъем температуры до максимально принятых. Если изделие загружают в пропарочную камеру с температурой 30-35 град., то выдерживание в ней без подачи пара в течении 1,5-2ч. равноценно первой ступени подъема температуры.

Оптимальная температура изотермического прогрева при использовании портландцементов 80-85 град.

Длительность изотермического выдерживания при пропаривании назначают в зависимости от требуемой прочности бетона изделий сразу после выдерживания бетона или с учетом прироста прочности при положительных температурах в цехе или на складе в возрасте до 1 суток.

3. Выбор и обоснование режима ТВО

При назначении режима ТВО изделий для лёгких бетонов существенное влияние оказывают не только особенности применяемого цемента, класса бетона, удобоукладываемость бетонной смеси, но и структура бетона (плотная, поризованная), наличие в его составе вовлеченного воздуха и его объем, прочность и объемная концентрация крупного заполнителя, гидравлическая активность мелкого заполнителя, зол и золошлаковых отходов ТЭС.

Для конструктивно-теплоизоляционных легких бетонов, применяемых при изготовлении ограждающих конструкций зданий, режим ТВО должен обеспечить минимально возможную отпускную влажность бетона изделий.

Для обеспечения минимальной отпускной влажности тепловую обработку следует проводить в условиях, способствующих испарению влаги из изделия.

Такой прогрев может осуществляется в тепловых установках периодического и непрерывного действия (в камерах ямного, туннельного и щелевого типов), оборудованных регистрами, ТЭНами, колориферами или теплогенераторами для сжигания природного газа. Максимальная температура среды в камерах сухого прогрева может быть повышена в зависимости от необходимой длительности тепловой обработки до 150°С. С целью обеспечения заданной влажности изделий камеры рекомендуется оборудовать системой вентиляции.

При тепловой обработке в термоформах не следует укрывать открытую поверхность изделий.

ТВО в паровоздушной среде с относительной влажностью 85-95% и температурой 80-85°С допускается проводить для изделий, изготавливаемых из конструкционно-теплоизоляционных легких бетонов с низким начальным водосодержанием или при производстве панелей для промышленного строительства.

При назначении режимов тепловой обработки изделий из лёгких бетонов следует учитывать следующие особенности кинетики роста их прочности:

·  Замедление темпа нарастания прочности при тепловой обработке бетонов на гидравлически активных мелких заполнителях тем сильнее, чем ниже температура в тепловой установке;

·        Увеличение содержания вовлеченного воздуха и снижение проектной прочности и плотности бетона приводит к замедлению темпа нарастания прочности при тепловой обработке, проявляющегося тем заметнее, чем ниже температура в тепловой установке;

·        При снижении прочности и плотности крупного заполнителя темп нарастания прочности при прочих равных условиях повышается и проявляется тем заметнее, чем ниже температура в тепловой установке.

При назначении режима ТВО изделий из лёгких бетонов необходимо учитывать замедленный рост прочности бетона в самом изделии по сравнению с кинетикой роста прочности в той же тепловой установке контрольных образцов-кубов. Это обусловлено замедлением прогрева бетона в изделиях вследствие его теплопроводности, проявляющейся тем больше, чем меньше плотность бетона, больше толщина изделия, меньше относительная влажность паровоздушной среды, снижающая величину коэффициента теплоотдачи.

В целях экономичного использования тепловой энергии при назначении режимов ТВО следует учитывать последующее нарастание прочности бетона изделий вследствие его остывания в цехе в течение 12 ч.

Длительность предварительного выдерживания и скорость подъема температуры среды при тепловой обработке изделий из тяжелого бетона принимаются в соответствии с данными табл. 15 и 16 [1].

Из табл. 16 [1] в зависимости от способа ТВО (пропаривание в камерах) выбираем скорость подъема температуры среды.,

Из таблицы 17 [1] в зависимости от способа тепловой обработки выбираем температуру и продолжительность изотермического прогрева.

Для пропаривания в камерах острым паром температура tИЗ=80°С. При этом продолжительность изотермического прогрева t2=7ч. Продолжительность изотермического прогрева должна определятся временем, необходимым для достижения в центре изделий температуры 80°С. Скорость остывания поверхности изделий после изотермического прогрева не должна быть больше 40°С/ч. При выгрузке изделий из камеры температурный перепад между поверхностью изделий и температурой окружающей среды не должен превышать 40°С.

Длительность охлаждения изделий в камерах устанавливается в зависимости от толщины изделия и температуры окружающей среды в момент распалубки в соответствии с данными табл. 19 [1].

Температуру окружающей среды принимаем равной t0=20°C. Так как толщина изделия d=400 мм, следовательно длительность охлаждения в камере t3=2 ч.

Зная температуру окружающей среды и скорость подъема температуры среды при ТВО изделий, а также температуру изотермического прогрева, определим продолжительность подъема температуры среды (I-й период ТВО):


 ч.

Принимаем t1=3 ч. Следовательно, общая продолжительность ТВО:


 ч.

Выбранный режим проверяем расчетом средних температур по сечению изделий к концу основных периодов ТВО:

1.      подъема температуры;

2.      изотермической выдержки.

Расчет производим, используя критериальные зависимости теплопроводности при нестационарных условиях. Определяем критерий Фурье:


где τ - продолжительность периода ТВО, ч;

R -толщина слоя бетона (при двухстороннем нагреве), м:


α - коэффициент температуропроводности, м2/с. Определяем по формуле:


где λ - коэффициент теплопроводности твердого бетона, Вт/мּК; λ=0,92 Вт/м2·С

сб - удельная теплоемкость бетона, Дж/кгּК;

ρ - средняя плотность бетона, кг/м3.

где  - величины удельных теплоемкостей составляющих бетона (песок, цемент, вода, щебень, арматура, кДж/кг∙К; Мi - масса отдельных составляющих бетона, кг; МБ - масса бетоного изделия, кг/ч:

Для первого периода ТВО:

 м2/с;

.

Определяем критерий Био:


где α =100- коэффициент теплопроводности от паровоздушной среды к поверхности изделия, Вт/м2·К.

Для первого периода ТВО:

.

С помощью критериев и монограмм находим безразмерные температуры на поверхности и в центре изделия:


где tC- температура паровоздушной среды;

tП - температура поверхности изделия;

tH - температура бетона в начале расчетного периода;

tц - температура в центре изделия.

Из графика для определения температуры на поверхности изделия:


Температура паровоздушной среды в первый период ТВО tС=80°С, а температура бетона в начале расчетного периода tН=20°С, следовательно:

;

 °С.

Определим температуру в центре изделия в I-й период ТВО аналогичным образом, т.е. из графика для определения температуры в центре изделия известно, что:

;

;

 °С.

Режим ТВО выбран правильно, если к концу I периода температура поверхности изделия равна температуре среды (допускается ±10°С). Проверка:  °С - условие выполняется. Следовательно, режим ТВО выбран верно. Произведем аналогичный расчет для второго периода ТВО. Критерии Фурье и Био:

;

Находим температуры на поверхности и в центре изделия

; ;

; ;

 °С  °С

Вывод: режим ТВО выбран неправильно, так как к концу второго периода tП-tЦ=76-62=14 °С, что не в пределах допустимого, т.к. (tС-tП) и (tП-tЦ) <10 °С.

Принимаем tII=13 ч.

;

 .

Находим температуры на поверхности и в центре изделия:

; ;

; ;

 °С  °С

Вывод: режим ТВО выбран правильно, так как к концу второго периода разность температур находится в пределах допустимого, т.е.  °С.

В результате получаем:

 ч.

бетон пар часовой теплоноситель

4. Определение габаритных размеров и требуемого количества тепловых агрегатов

Рис.2 - Габариты туннельной камеры

Для расчета принимаем:

1.      Наружная стеновая панель: l=6,995 м; b=2,9 м; h=0,4 м

2.      м - длина формы;

.        м - ширина формы;

.        м - высота формы.

Определение габаритных размеров:

· Ширину камеры находим по формуле:


где bФ=0,7 - ширина формы, м;

b1=0,3 - необходимые зазоры, м.

 м.

· Высоту камеры определяем по формуле:

где hФ - высота формы, м;

h2=h3 =0.15 расстояние от пола до нижней поверхности формы и от верха изделия до крышки , м.

 м.

· Длину камеры находим по формуле:


где lФ - длина формы, м;

- часовая производительность.

- продолжительность периода.

м3/ч

где -годовая производительность цеха; =32000м3;

- объем бетона обрабатываемого установке;

 м3/ч

м - число рабочох дней в году (250 дн.);

z - продолжительность рабочей смены (8);

к - число смен (3);

Тогда длина каждой из зон:

м Принимаем =22,5м (3 формы)

м Принимаем =82,5м (11 форм)

м Принимаем =15м (2 формы)

Тогда длина всей камеры составит:

м

5. Описание конструкции установки и порядок ее работы

В установках непрерывного действия в отличие от периодического легче механизировать и автоматизировать весь процесс. Производительность труда обслуживающего персонала на них значительно возрастает, поэтому в настоящее время они и внедряются наиболее широко в производство. В качестве установок непрерывного действия для тепловлажностной обработки наиболее широко применяют щелевые горизонтальные, щелевые полигональные и вертикальные пропарочные камеры.

Горизонтальные пропарочные камеры щелевого типа представляют собой туннель длиной L=100-120 м. Ширина туннеля проектируется в расчете на движение через него одного-двух изделий на каждой форме-вагонетке и находится в пределах В=5-7 м. Высота Н=1,0-1,17 м. В камере помещается от 17 до 27 вагонеток с изделиями. В отличие от периодически действующих камер, где подъем температуры, а затем изотермическая выдержка и охлаждение осуществляются последовательно во времени в одной камере, щелевые пропарочные камеры по длине разделяются на соответствующие зоны: зону подъема температуры среды, изотермической выдержки и охлаждения. В первую и вторую подводится тепловая энергия, третья зона-зона охлаждения, теплом не снабжается, а наоборот, вентилируется холодным воздухом. Разделение камеры на функциональные зоны позволяет экономить тепловую энергию за счет затрат теплоты на нагрев конструкций после каждого цикла по сравнению с установками периодического действия.

Схема горизонтальной щелевой пропарочной камеры показана на рисунке 3. Принцип работы такой камеры следующий. Вагонетка с изделием в форме поступает на снижатель 2, оборудованный толкателем. Снижатель опускает вагонетку на уровень рельсов щелевой камеры 4, и толкатель выталкивает вагонетку со снижателя в камеру. При этом вагонетка с изделием проходит под механической шторой 3, которая предохраняет торец камеры от выбивания паровоздушной смеси и проникания в нее холодного воздуха. Одновременно вагонетка с изделием усилием толкателя продвигает весь поезд, находящийся в камере, и последняя вагонетка также через герметизирующую штору 5 выдвигается на подъемник 6, который поднимает вагонетку на уровень пола, откуда она транспортируется на пост распалубки изделий. Изменяя ритм загрузки вагонеток можно повышать или снижать производительность камеры.

Камера разделяется на три зоны: зону подъема температуры - подогрева ( /), зону изотермической выдержки ( //) и зону охлаждения (///). Тепловая обработка изделий в камере сводится к следующему. Материал, поступивший в камеру, может подогреваться либо паром, либо ТЭНами. При нагреве паром для его подачи используют двухсторонние стояки, причем первая пара стояков располагается на расстоянии 20-25 м от входа с шагом от 2 до 6 м, а последняя - на расстоянии 35-40 м от выгрузочного торца камеры. Пар смешивается с воздухом, образуя паровоздушную смесь. Для улучшения использования теплоты пара устраивают рециркуляцию: паровоздушную смесь отбирают у загрузочного конца камеры и возвращают в конец зоны подогрева. Рециркуляция помогает уменьшить потери пара, проникающего в зону охлаждения за счет его передвижения к загрузочному концу камеры. Кроме того, в этих же целях между зоной изотермической выдержки и охлаждения устраивают воздушные завесы или перегородки из термостойкой резины. Воздушные завесы в целях экономии тепла устраивают и в месте загрузки камеры. Максимальный нагрев изделий при использовании пара составляет 80-85 °С, ибо в данном случае в камере кроме пара находится воздух.

ТЭНы в виде блоков размещают в камере, начиная с расстояния 6-10 м от загрузочного конца и заканчивая размещение в конце зоны изотермической выдержки. При этом рециркуляционную систему усиливают, либо ставят две рециркуляционные системы. Условия тепло- и массообмена в случае нагрева ТЭНами отличаются от существующих при нагреве паром.

Причем нагрев изделий ускоряется и такие камеры делают несколько короче, их длина достигает 80-90 м. Ускоряют нагрев также и путем повышения температуры среды до 120-130 °С. Такой нагрев среды достигается перегревом пара. В этом случае часть пара и воздуха выходит из камеры вследствие неплотностей. Расход теплоты в таких камерах в пересчете па пар составляет 150-200 кг на 1 м3 изделий.

После тепловой обработки в зонах подогрева и изотермической выдержки как в случае нагрева наром, так и при использовании ТЭНов изделия охлаждают. Схема зоны охлаждения для таких камер представлена на рисунке 4. В ней с двух сторон устраивают каналы: один заборный 3, снабженный выведенными в цех заборными шахтами 2, на которых для регулирования забора воздуха устанавливают жалюзные решетки(/). Другой канал- отборный 7, соединенный с вентилятором 9 коробом 8.

Охлаждают изделия 5 следующим образом. За счет тяги, создаваемой вентилятором 9, воздух через жалюзные решетки (/) заборных шахт 2 попадает в канал 3, из которого через окна 4 поступает в зону охлаждения и охлаждает изделия. Отработанный воздух через окна 6 проходит в канал 7, далее через короб 8 в вентилятор 9, который и выбрасывает его в атмосферу через трубу 10.

Рис. 3 Схема горизонтальной пропарочной камеры щелевого типа

6. Теплотехнический расчет

В ходе теплотехнического расчета составляются уравнения теплового баланса для каждого периода ТВО или для каждой из зон ТВО. Уравнение составляется для одного теплового агрегата, работающего в неблагоприятных условиях.

Количество теплоты, расходуемое за каждый период или в каждой зоне ТВО определяется по следующей формуле:


где åQ - суммарный расход теплоты за период или в соотвествующей зоне ТВО, кДж/ч; QБ, QТР, QФ, QОГР, QПОТ, QИСП, QСР - количество теплоты, необходимое соответственно для нагрева бетона, транспортных средств, формы, ограждений, на потери в окружающую среду, на испарение воды затворения, на нагрев среды установки; QЭКЗ - количество теплоты, выделяющееся в процессе реакции гидратации цемента; β - коэффициент запаса на нерасчитываемые затраты теплоты (β=1,05-1,2), принимаем β=1,1.

Проведем теплотехнический расчет для установки периодического действия.

.1 Расчет теплоты для нагрева изделий определяем по формуле:

Nч, кДж

где СБ - средневзвешенная теплоемкость бетонной смеси, кДж/кг∙К:


VБ - суммарный объем бетона изделий в зоне;

tH,tK - средние значения температур в начале и конце соответствующего периода или зоны, ºС;

τ - продолжительность нахождения изделия в рассматриваемой зоне, ч.

Рассчитываем СБ по формуле (7.3), при этом известно, что Сi=0,84 - для бетона, кДж/кг∙К и 0,46 кДж/кг∙К для стали.

По формуле определяем МБ:

 кг

Расчет теплоты для нагрева изделий производится по периодам:

·        Для первого периода

;

Где tП и tЦ - соответственно температура на поверхности и в центре изделия, °С.

 °С,

следовательно, для первого периода теплота для нагрева изделия равна:

 кДж/ч.

· Для второго периода:

;  °С,

Следовательно, для второго периода теплота для нагрева изделий равна:


.2 Расчет теплоты для нагрева форм

Определяется по формуле:

, кДж/ч

где СФ=См=0,482 (для металла) - теплоемкость материала формы кДж/кг·К;

МФ - масса форм, кг/ч.


где VИЗД - объем бетона одного изделия, м3;

qМ - удельная металлоемкость форм. Для колонн принимаем qМ=1,1 т/м3.

tKФ, tНФ - конечные и начальные температуры форм, °С; (принимаются равным температуре поверхности изделий в конце и начале периода).

·        Для первого периода:

 кг;

 кДж/ч.

·        Для второго периода:

кДж/ч.

.3 Расчет потерь теплоты на нагрев транспортных средств

= кДж/ч.

.4 Расчет потерь теплоты через ограждающие конструкции установки

Q пот =3,6

где Ri - термическое сопротивление слоя ограждения ;

Fi - площадь поверхности ограждения

tср - температура среды установки, С

tн - температура наружного воздуха, С


 - коэффициенты теплоотдачи внутренней и наружной поверхности ограждения,

 и =10 Вт / м2 С

 и  - толщины слоев ограждения и коэффициент теплопроводности материалов.

Рассмотрим конструктивные решения конструкции ограждения :

Стена туннельной камеры утеплена минватой.

Рис.4- Конструкция ограждения тепловой установки

Коэффициенты теплопроводности слоёв:

Железобетон: λ1=λ3=1,92 ;

Минвата: λ2=0,052;

Рассчитаем R1

Ri =

Покрытие туннельной камеры

Рис.5-Конструкция покрытия тепловой установки

Коэффициенты теплопроводности слоёв:

Железобетон: λ1=λ3=1,92 ;

Гравий керамзитовый: λ2=0,18;

Битумы нефтяные: λ3=0,27.

Рассчитаем R2

Ri =

·        Для первого периода

tср=80 0 С tн=20 0С tн=6,1 0С

F1=1ּ22,5ּ1=22,5 м2

F2=2ּ22,5ּ4=180 ì2

Находим

QIпот=кДж/ч

·        Для второго периода

tср=80 0 С tн=20 0С tн=6,1 0С

F1=2ּ82,5ּ1=82,5 м2

F2=2ּ82,5ּ4=330 м2

Qпот=кДж/ч

.5 Расчет теплоты на испарение влаги затворения

ּNч, кДж/ч

где r=2030- теплота парообразования при температуре бетона, кДж/кг;

МИСП - количество испаряющейся воды в рассматриваемый период, кг/ч,

,

 кг/ч,

следовательно  кДж/ч;

, кДж/ч

.6 Теплосодержание паровоздушной среды, заполняющей свободный объем камеры.

, кДж/ч

где VСВОБ. - свободный объем камеры, м3;

, м3

VБЕТ, VМЕТ - общий объем бетона и форм в соответствующей зоне камеры, м3.

; rМЕТ=7850 кг/м3

rСР - средняя плотность паровоздушной среды, rСР=0,58 кг/м3;

hСР - энтальпия среды, занимающей объем камеры, hСР=2675 кДж/кг.

·      Для первого периода:

 м3;

 м3;

 м3;

 кДж/ч.

·      Для второго периода:

 м3;

м3;

 м3;

 кДж/ч.

.7 Теплота экзотермических реакций гидратациии цемента

, кДж/ч

где qЭ28=300 - теплота гидротации цемента при его твердении в нормальных условиях в течении 28 суток (принимается равной марке цемента), кДж/кг;

В/Ц - расход воды и цемента в бетоне кг/м3;

tСРБ - средняя температура бетона за период обработки,°С;

VБ - объем бетона в соответствующей температурной зоне, м3.

 кДж/ч;

 кДж/ч,

 кДж/ч,

Следовательно, суммарный расход теплоты в соответствующей зоне равен:


7. Îïðåäåëåíèå óäåëüíûõ ÷àñîâûõ ðàñõîäîâ òåïëîòû è òåïëîíîñèòåëÿ

. ×àñîâûå ðàñõîäû òåïëîòû, êÄæ/÷:

 êÄæ/÷;

 êÄæ/÷,

ãäå  è  - ðàñõîäû òåïëà â ñîîòâåòñòâóþùåé çîíå, êÄæ/÷.

. ×àñîâûå ðàñõîäû òåïëîíîñèòåëÿ (ïàðà), êã/÷:

 êã/÷

 êã/÷

ãäå Dh - èñïîëüçóåìîå òåïëîñîäåðæàíèå åäèíèöû òåïëîíîñèòåëÿ, êÄæ/êã;

 êÄæ/êã

ãäå  êÄæ/êã; (8.4)

 êÄæ/êã (ïî òàáëèöå);

h’=630 êÄæ/êã - òåïëîñîäåðæàíèå òåïëîíîñèòåëÿ ïðè çàäàííîì ÐÖ=0,48 ìÏà;

r=2030 - òåïëîòà ïàðîîáðàçîâàíèÿ ïðè çàäàííîì ÐÖ;

õ - ñòåïåíü ñóõîñòè ïàðà â ñîîòâåòñòâèè ñ çàäàíèåì, õ=0,85.

. Óäåëüíûé ðàñõîä òåïëà è òåïëîíîñèòåëÿ (ïàðà) îïðåäåëÿåì ïî ôîðìóëàì:

 êÄæ/ì3

V× - ÷àñîâàÿ ïðîèçâîäèòåëüíîñòü óñòàíîâêè ïî áåòîíó, ì3/÷:

 ì3/÷

 êã/ì3

8. Ðàñ÷åò ñèñòåìû òåïëîñíàáæåíèÿ

 õîäå ðàñ÷åòà îïðåäåëÿþòñÿ äèàìåòðû ïàðîïðîâîäà, èäóùåãî ê áëîêó óñòàíîâêè è äèàìåòðû ïàðîïðîâîäîâ.

Ïëîùàäü ïîïåðå÷íîãî ñå÷åíèÿ ïàðîïðîâîäà îïðåäåëÿåòñÿ ïî ôîðìóëå:

, ì2

ãäå GÏ - ðàñõîä ïàðà íà ðàñ÷åòíîì ó÷àñòêå ïàðîïðîâîäà, êã/÷;

 êã/÷;

 êã/÷;

 êã/÷;

rÑÐ=3,269 - ñðåäíÿÿ ïëîòíîñòü ïàðà íà ó÷àñòêå, êã/ì3 (ïðèíèìàåòñÿ ïî çàäàííîìó äàâëåíèþ PÖ);

u - ñêîðîñòü ïàðà, ì/ñ (u=30 ì/ñ).

Ðàñ÷åò äèàìåòðîâ ïðîèçâîäèì èç óñëîâèÿ îáåñïå÷åíèÿ ïðèíÿòîé ñêîðîñòè äâèæåíèÿ ïàðà.

 ì2;

 ì;

 ì2;

 ì;

 ì2;

 ì.

Ðàçìåð â ìì

Ëèíåéíàÿ ïëîòíîñòü, êã/ì

Ïëîùàäü ñå÷åíèÿ, ñì2

Ðàäèóñ èíåðöèè, ñì

L




Ìàãèñòðàëü 530 ìì

6

77,53

98,8

18,5

Îòâ. I 530

4

39,46

50,3

11,3

Îòâ. II 325

4

39,49

50,3

11,3


9. Ìåòîäû êîíòðîëÿ ïàðàìåòðîâ ÒÂÎ. Èçìåðåíèå ðàñõîäà ïàðà ñóæàþùèìè óñòðîéñòâàìè.

Èçìåðåíèå ðàñõîäà âîçäóõà èëè ïàðà îáùåãî äóòüÿ ïðîèçâîäèòñÿ ïðè ïîìîùè ìóëüòèïëèêàòîðà, ïðåäñòàâëåííîãî íà ðèñ. 8.

Ðèñ. 6. Ìóëüòèïëèêàòîð 1 - ïîëíîå äàâëåíèå; 2-èñêóññòâåííî ñîçäàííîå ñòàòè÷åñêîå äàâëåíèå

Ïðè èçìåðåíèè ðàñõîäà âîçäóõà â âîçäóõîïðîâîäå ìóëüòèïëèêàòîðîì â èçìåðèòåëüíîé òðóáêå ñîçäàåòñÿ ìåñòíîå ñóæåíèå. Çäåñü ñêîðîñòü ïðîòåêàíèÿ âîçäóõà ïîâûøàåòñÿ ïî ñðàâíåíèþ ñî ñêîðîñòüþ ïîòîêà äî ñóæåíèÿ. Óâåëè÷åíèå ñêîðîñòè, à ñëåäîâàòåëüíî, è êèíåòè÷åñêîé ýíåðãèè â ñóæåííîì ñå÷åíèè âûçûâàåò óìåíüøåíèå ïîòåíöèàëüíîé ýíåðãèè ïîòîêà. Ñîîòâåòñòâåííî è ñòàòè÷åñêîå äàâëåíèå â ýòîì ñå÷åíèè áóäåò ìåíüøå, ÷åì â ñå÷åíèè äî äðîññåëüíîãî óñòðîéñòâà. Âîçäóøíûé ïîòîê, âõîäÿ â ñóæàþùóþñÿ ÷àñòü íàñàäêè, óñêîðÿåòñÿ, â ñâÿçè ñ ÷åì ñòàòè÷åñêàÿ ñîñòàâëÿþùàÿ äàâëåíèÿ áûñòðî óìåíüøàåòñÿ.

Îòáîð ñòàòè÷åñêîãî äàâëåíèÿ ïðîèñõîäèò â ñóæåííîé ÷àñòè îïèñûâàåìîãî óñòðîéñòâà, ãäå ñòàòè÷åñêàÿ ñîñòàâëÿþùàÿ äîñòèãàåò ñâîåãî ìèíèìóìà. Ïîñêîëüêó âåëè÷èíà ïîëíîãî äàâëåíèÿ èçìåðÿåòñÿ â íåâîçìóùåííîé ÷àñòè ïîòîêà, ïåðåïàä ìåæäó ïîëíûì äàâëåíèåì è èñêóññòâåííî ñîçäàííûì ñòàòè÷åñêèì äàâëåíèåì îêàçûâàåòñÿ áîëüøå äèíàìè÷åñêîé ñîñòàâëÿþùåé ïîòîêà.

Äàííàÿ ïíåâìîìåòðè÷åñêàÿ òðóáêà ÿâëÿåòñÿ èçìåðèòåëüíûì ýëåìåíòîì ñ èíäèâèäóàëüíîé òàðèðîâêîé.

Ìóëüòèïëèêàòîð óñòàíàâëèâàåòñÿ íà ïðÿìîì ó÷àñòêå âîçäóõîïðîâîäà, íå èìåþùåì ìåñòíûõ ñîïðîòèâëåíèé, òàê, ÷òîáû ðàáî÷àÿ ÷àñòü ìóëüòèïëèêàòîðà ðàñïîëàãàëàñü â öåíòðå âîçäóøíîãî ïîòîêà.

Çàêëþ÷åíèå

Òåïëîâûå óñòàíîâêè íà çàâîäàõ ñòðîèòåëüíûõ ìàòåðèàëîâ è èçäåëèé ÿâëÿþòñÿ àãðåãàòàìè ïîâûøåííîé îïàñíîñòè, òàê êàê èõ ðàáîòà ñâÿçàíà ñ âûäåëåíèåì òåïëîòû, âëàãè, ïûëè, äûìîâûõ ãàçîâ. Ïîýòîìó óñëîâèÿ òðóäà ïðè ýêñïëóàòàöèè òàêèõ óñòàíîâîê ñòðîãî ðåãëàìåíòèðóþòñÿ ñîîòâåòñòâóþùèìè ïðàâèëàìè è èíñòðóêöèÿìè. Êîíòðîëü çà ñîáëþäåíèåì ïðàâèë è èíñòðóêöèé ïî îõðàíå òðóäà è òåõíèêå áåçîïàñíîñòè îñóùåñòâëÿåòñÿ îðãàíàìè ãîñóäàðñòâåííîãî íàäçîðà è îáùåñòâåííûìè îðãàíèçàöèÿìè, êîòîðûå è ðàçðàáàòûâàþò ýòè íîðìû.

Ñîãëàñíî äåéñòâóþùèì íîðìàòèâàì, â öåõàõ, ãäå ðàçìåùàþòñÿ òåïëîâûå óñòàíîâêè, íåîáõîäèìî èìåòü: ïàñïîðò óñòàíîâëåííîé ôîðìû ñ ïðîòîêîëàìè è àêòàìè èñïûòàíèé, îñìîòðîâ è ðåìîíòîâ íà êàæäóþ óñòàíîâêó; ðàáî÷èå ÷åðòåæè íàõîäÿùåãîñÿ îáîðóäîâàíèÿ è ñõåìû ðàçìåùåíèÿ ÊÈÏ; èñïîëíèòåëüíûå ñõåìû âñåõ òðóáîïðîâîäîâ ñ íóìåðàöèåé àðìàòóðû è ýëåêòðîîáîðóäîâàíèÿ; èíñòðóêöèè ïî ýêñïëóàòàöèè è ðåìîíòó.  òàêèõ èíñòðóêöèÿõ äîëæíî áûòü êðàòêîå îïèñàíèå óñòàíîâîê, ïîðÿäîê èõ ïóñêà, óñëîâèÿ áåçîïàñíîé ðàáîòû, ïîðÿäîê îñòàíîâêè, óêàçàíû ìåðû ïðåäîòâðàùåíèÿ àâàðèè. Êðîìå òîãî, èíñòðóêöèè äîëæíû ñîäåðæàòü ÷åòêèå óêàçàíèÿ î ïîðÿäêå äîïóñêà ê ðåìîíòó óñòàíîâîê, î ìåðàõ áåçîïàñíîãî îáñëóæèâàíèÿ è ïðîòèâîïîæàðíûõ ìåðîïðèÿòèÿõ.

Íà ñòàäèè ïðîåêòèðîâàíèÿ ïðåäóñìàòðèâàþòñÿ íîðìû áåçîïàñíîé ðàáîòû è ýêñïëóàòàöèè òåïëîâûõ óñòàíîâîê. Êàæäàÿ òåïëîâàÿ óñòàíîâêà ðàçðàáàòûâàåòñÿ ñ òàêèì ðàñ÷åòîì, ÷òîáû îíà ñîçäàâàëà îïòèìàëüíûå óñëîâèÿ âåäåíèÿ òåõíîëîãè÷åñêîãî ïðîöåññà è áåçîïàñíûå óñëîâèÿ òðóäà. Äëÿ ýòîãî íåîáõîäèìî, ÷òîáû ïîâåðõíîñòè óñòàíîâîê áûëè òåïëîèçîëèðîâàíû è èìåëè òåìïåðàòóðó íå âûøå 40 °Ñ.

Ïðîåêòèðîâàòü òîïêè, ñóøèëà, ïå÷è, â êîòîðûõ èñïîëüçóþòñÿ ïðîäóêòû ãîðåíèÿ òîïëèâà, ðàçðåøàåòñÿ òîëüêî íà äàâëåíèå ìåíåå àòìîñôåðíîãî (ðàçðåæåíèå). Óñòàíîâêè äëÿ òåïëîâëàæíîñòíîé îáðàáîòêè ïðîåêòèðóþò ñ îáÿçàòåëüíîé ãåðìåòèçàöèåé. Ýòè óñòàíîâêè îáîðóäóþò âåíòèëÿöèåé ðàáî÷åãî ïðîñòðàíñòâà, êîòîðàÿ âêëþ÷àåòñÿ ïåðåä âûãðóçêîé èçäåëèé è òåì ñàìûì ïîçâîëÿåò óäàëÿòü ïàð èç óñòàíîâêè.

Îáîðóäîâàíèå òåïëîâûõ óñòàíîâîê ïðîåêòèðóþò ñ îãðàæäåíèåì, à åãî âêëþ÷åíèå â ðàáîòó äîëæíî ñîïðîâîæäàòüñÿ çâóêîâîé è ñâåòîâîé ñèãíàëèçàöèåé. Ïëîùàäêè äëÿ îáñëóæèâàíèÿ, íàõîäÿùèåñÿ âûøå óðîâíÿ ïîëà, îáîðóäóþò ïðî÷íûì îãðàæäåíèåì è ñïëîøíîé îáøèâêîé ïî íèæíåìó êîíòóðó.

Îòîïëåíèå è âåíòèëÿöèÿ öåõîâ, â êîòîðûõ óñòàíàâëèâàþò òåïëîâûå óñòàíîâêè, íåîáõîäèìî ðàññ÷èòûâàòü ñ ó÷åòîì âûäåëåíèÿ òåïëîòû, èñïàðåíèÿ âëàãè è âûäåëåíèÿ ïûëè. Ýëåêòðîîáîðóäîâàíèå òåïëîâûõ óñòàíîâîê ïðîåêòèðóþò ñ çàçåìëåíèåì. Âñå ïåðåíîñíîå îñâåùåíèå äåëàþò íèçêîâîëüòíûì.

Ýëåêòðîîáîðóäîâàíèå òåïëîâûõ óñòàíîâîê äîëæíî áûòü çàïðîåêòèðîâàíî ñ îãðàæäåíèåì è çàçåìëåíèåì.

Îñîáîå âíèìàíèå ïðè ïðîåêòèðîâàíèè òåïëîâûõ óñòàíîâîê ñëåäóåò óäåëÿòü î÷èñòêå ðàáîòàþùèõ òåïëîíîñèòåëåé îò óíîñîâ ïûëè è ìåëêèõ ÷àñòèö ìàòåðèàëà. Ñîãëàñíî íîðìàòèâíûì óêàçàíèÿì, äëÿ òåïëîâûõ óñòàíîâîê ñëåäóåò ïðîåêòèðîâàòü ñïåöèàëüíûå î÷èñòíûå óñòðîéñòâà.

Ñïèñîê ëèòåðàòóðû

1. Â.Â. Ïåðåãóäîâ, Ì.È. Ðîãîâîé «Òåïëîâûå ïðîöåññû è óñòàíîâêè â òåõíîëîãèè ñòðîèòåëüíûõ èçäåëèé è äåòàëåé». Ì., Ñòðîéèçäàò, 2012.

. Â.Í. ×óáóêîâ, Â.Í. Îñíîâèí, Ë.Â. Øóëÿêîâ «Ñòðîèòåëüíûå ìàòåðèàëû è èçäåëèÿ» Ìí., Äèçàéí ÏÐÎ, 2000.

. Ñïðàâî÷íèê ïî òåõíîëîãèè ñáîðíîãî æåëåçîáåòîíà. Ïîä îáù. ðåä. Ñòåôàíîâà Á.Â., Êèåâ, Âèùà øêîëà, 1978.

. Îáùåñîþçíûå íîðìû òåõíîëîãè÷åñêîãî ïðîåêòèðîâàíèÿ ïðåäïðèÿòèé ñáîðíîãî æåëåçîáåòîíà (ÎÍÒÏ-7-80). Ì., Ñòðîéèçäàò, 2009.

. Ðåêîìåíäàöèè ïî ñíèæåíèþ ðàñõîäà òåïëîâîé ýíåðãèè â êàìåðàõ äëÿ òåïëîâîé îáðàáîòêè æåëåçîáåòîííûõ èçäåëèé. ÂÍÈÈÆÁ., Ì., Ñòðîéèçäàò, 2011.

. Ïîñîáèå ïî òåïëîâîé îáðàáîòêå ñáîðíûõ æåëåçîáåòîííûõ êîíñòðóêöèé è èçäåëèé (ê ÑÍèÏ 3.09.01-85). ÂÍÈÈÆÁ., Ì., 2009.

Ðàçìåùåíî íà Allbest.ur

Похожие работы на - Тепловая обработка строительных материалов и изделий

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!