Методы определения двухвалентного железа в почве

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Геология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    21,84 Кб
  • Опубликовано:
    2014-11-05
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Методы определения двухвалентного железа в почве















КУРСОВАЯ РАБОТА

МЕТОДЫ ОПРЕДЕЛЕНИЯ ДВУХВАЛЕНТНОГО ЖЕЛЕЗА В ПОЧВЕ

Оглавление

Введение

. История изучения железа двухвалентного в почвах

. Содержание железа двухвалентного как признак гидроморфизма почв

. Методы отбора и подготовки почвенных образцов для определения двухвалентного железа в почвах

Выводы

Список литературы

железо почва кислотный минерал

Введение

В составе почв в зависимости от кислотно-основных и окислительно восстановительных условий железо может присутствовать в двух разных степенях окисления. В анаэробных условиях железо чаще всего находится в степени окисления +2. При хорошей аэрации и достаточном доступе кислорода преобладают соединения, в которых железо имеет степень окисления +3. При этом железо очень легко и быстро переходит из одной степени окисления в другую при смене окислительно-восстановительных условий. Двухвалентное железо в больших количествах присутствует в оглеенных горизонтах, в связи с чем его количество указывают в качестве одного из признаков гидроморфизма почв. Определить содержание двухвалентного железа и его процент от валового содержания важно при диагностике подтопленных почв. Вместе с тем, имеются определенные трудности как при отборе и подготовке почвенных образцов для данного анализа (железо при сушке образца может сменить степень окисления), так и в подпоре оптимального метода определения двухвалентного железа, с чем и связана актуальность данной работы. Тем более, что в настоящее время появляется большое количество новых современных методов и приборов, позволяющих совершенствовать методы исследования.

Цель работы: изучить литературные источники и обобщить сведения о методах определения 2-ухвалентного железа в почвах.

Задачи:

. Изучить литературные источники и собрать необходимые сведения об отборе и подготовке проб для определения 2-ухвалентного железа в почвах

. Собрать сведения о разных методах определения двухвалентного железа в почвах как химических, так и физико-химических (инструментальных).

. Убедиться в наличии или отсутствии ГОСТов на эти анализы.

. Составить список необходимых реактивов и оборудования на каждый анализ.

1. История изучения железа двухвалентного в почвах

На железо как на элемент, входящий в состав почв, было обращено внимание еще в 18 в., в период агрогеологического направления в почвоведении. Уже тогда железо привлекло внимание, так как его соединения обусловливают окраску почв - красную и зеленовато - сизо - оливкувою. В составе почв определялось валовое количество полуторных окислов железа, а несколько позднее закисное железо(FeO). С началом докучаевской эпохи в почвоведении изучение велось в двух планах - морфологическом и химическом. В морфологии с повышенным содержанием железа связывалась красно-бурая, желтая и сизовато - зеленоватая окраска отдельных горизонтов или профиля в целом; различия в окраске служили показателям и аэробности или анаэробности почвенных режимов. Выделялись различного рода стяжения железа: примазки, пятна, конкреции ортштейновых и псефдофибровых слоев, окрашенных в кирпично-красный и бурые тона. С глубиной их залегания связывали интенсивность и степень миграции железа. В химии почв определялось не только валовое, но и растворимое в HCl-, H2SO4 -вытяжках различных концентраций железо, а так же водорастворимые формы его соединений.

Разработка их продолжается. Развитию исследований в области дифференциации соединений свободного железа способствовало и внедрение микроморфологического метода исследований С помощью поляризационного микроскопа были показаны многообразие железосодержащей плазмы в почвах и необходимость в связи с этим установления химических и минералогических различий между ними. Одновременно развивались и минералого - геохимические исследования железа, приведшие к выявлению новых железистых минералов и окислов Таким образом, кнастоящему времени изучение многообразия соединений и форм железа ведется минералогическими, химическими, рентгеноструктурными и термическими методами. В последнее время для этих же целей применяется метод мессбауэровской спектроскопии (Карпачевский, Бабанин, и др., 1972).

В истории разработки методов изучения железа можно выделить следующие три этапа: первый - определение валовых его количеств и профильного распределения в почвах с подразделением на окисные и закисные соединения; второй -минералого - химическое изучение железосодержащих минералов и растворимости свободного железа в органо - минеральных соединений и минеральных кислотах (HCl, H2SO4) различной концентрации; третий - дифферинцированное минералогическое, химическое и спектрометрическое изучение соединений железа с применением восстановительных и растворяющих реагентов различной «жескости» для выделения его форм по степени окристаллизованности и идентификации их рентгеноструктурным и микроморфологическим методами.

2. Содержание железа двухвалентного как признак гидроморфизма почв

Среди несиликатных соединений железа в почвах доминируют оксиды и гидроксиды. Минералы других классов - карбонаты, сульфиды и сульфаты - встречаются гораздо реже. Гидроксиды железа образуют ряд минералов, различающихся термодинамической стабильностью: это - ферригидрит Fe2О3 2FeOOH 2.5Н20, фероксигит βFeOOH, лепидокрокит γFeOOH и гетит αFeOOH.

К термодинамически нестабильным относят все гидроксиды, кроме гетита, у которого свободная энергия Гиббса минимальна. Нестабильные гидроксиды железа несут важную почвенную информацию. Вопервых,эти молодые минералы свидетельствуют о современном оксидогенезе железа. С течением времени фероксигитможет спонтанно переходить в гетит, а ферригидрит - в гематит или гетит. Во-вторых, присутствие их свидетельствует об активности в почве гетеротрофных окисляющих микробов. Активны эти микроорганизмы при низком содержании железа в растворе и при низкой концентрации органических кислот. Без участия микроорганизмов при достаточно высокой активности железа в растворе происходит химическое осаждение железа с формированием гетита или лепидокрокита. Иногда частицы гетита и лепидокрокита образуются биогенным путем (Водяницкий, 2003).

Влияние рН и температуры изучено достаточно хорошо. При рН 6 в условиях дефицита протонов из ферригидрита образуется в основном гематит, а при рН 5 - гетит. Недавно Швертман с соавторамии показали, что подъем температуры с +4° до +25 °С способствует образованию из ферригидрита гетита. Несмотря на близость структур феррригидрита и гематита, вполне возможен переход ферригидрита (через фазу растворения) не в гематит, а в гетит, особенно в условиях переменного редокс-режима. Движущей силой такого превращения в почвах с застойным режимом влажности служит Fe2+, которое выполняет роль катализатора растворения ферригидрита с последующим образованием гидроксидов. В более усложненных модельных опытах с ферригидритом используют редуктант в виде Fe2+. Это радикально меняет направление трансформации ферригидрита. Под воздействием Fe2+ снижается редокс-потенциал, что приводит к растворению слабоупорядоченного ферригидрита и последующему образованию гораздо более упорядоченных частиц гидроксидов: лепидокрокита или гетита.

Этот эффект имеет реальное значение для судьбы железа в умеренно кислых оглеенных почвах. Здесь под воздействием ионов Fe2+ферригидрит превращается в более окристаллизованный гетит. Таким образом, вначале при уменьшении редокс-потенциала Ен в гидроморфной почве часть ферригидрита биологически редуцируется до Fe2+, а затем новообразованноеFe2+ способствует синтезу более окристаллизованного гидроксида - гетита. Все эти сложные процессы преобразования форм соединений Fe можно изучать с применением электронной просвечивающей микроскопии, сопряженной с микродифракции электронов (Водяницкий, 2003).

Важным является вопрос о судьбе ферригидрита в почвах подзолистого ряда. Это очень неустойчивый, эфемерный гидроксид, в результате чего возможно превращение его частиц в более стабильные формы: гетит или гематит. В какую именно форму превращается ферригидрит в почвах подзолистого ряда, мы определяли по числу встречающихся ассоциаций "ферригидрит + гетит" и "ферригидрит + гематит". Оказалось, что ассоциация "ферригидрит + гетит", встречается в этих почвах в 6 раз чаще, чем ассоциация "ферригидрит + гематит". Из этого следует, что ферригидрит в почвах подзолистого ряда может превращаться главным образом в гетит, но не в гематит. Такой путь эволюции согласуется с теми данными, которые известны ранее. Превращению ферригидрит → гетит благоприятствуют три важных фактора: низкая температура, гумидность климата, кислые условия среды с рН от 4 до 6. Все они имеют место в подзолистых почвах Русской равнины. Возможно, что, благодаря превращению ферригидрита в гетит, последний широко распространен в подзолистых почвах умеренной зоны. Сохранению ферригидрита как слабоупорядоченного гидроксида способствуют неорганические и органические ингибиторы кристаллизации.

Среди природных неорганических ингибиторов важную роль выполняет кремнезем. Ферригидрит часто находят в почвах, где грунтовые воды богаты кремнием или почвы обогащены доступным кремнием. В альфегумусовых подзолах в штате Нью-Йорк, США, с помощью электронной микроскопии обнаружены частицы ферригидрита в трех образцах почв из иллювиальных горизонтов Bw, Bs и Bs2. В них концентрируются плохо окристаллизованные алюмосиликаты типа имоголита, и в илистой фракции содержится много подвижного, оксалато растворимогоSi: >1.5%. Обилие кремния способствует синтезу слабоокристаллизованного ферригидрита в иллювиальных горизонтах подзолистых почв. Напротив, если железистые воды содержат мало кремния, как в десилицированных оксисолях центральной Бразилии, то в ручьях охристые осадки представлены гетитом и лепидокрокитом, но не ферригидритом.( Возна, 1964).

Помимо неорганических ингибиторов кристаллизации, в почвах важную роль играют органические. Ингибирующее действие органического вещества обнаружено в иллювиальном горизонте подзолов и в псевдофибрах подзолов и оглеенных почв. Сцементированные слои образуются в песчаных почвах Германии, Бельгии, Великобритании. Толщина такого слоя всего 2-10 мм, он имеет красно-бурую или черную окраску за счет цементации зерен кварца (гидр) оксидами железа и/или марганца или железо-органическими комплексами. Исследования псевдофибров показали, что в них содержатся ферригидрит, гетит и реже лепидокрокит. Ферригидрит преобладает при высоком содержании органического углерода: С орг> 5%. Если же в этих слоях С орг<2- 3%, то доминирует гетит и лепидокрокит. Согласно Швертману, доминирование ферригидриа характерно при высоком содержании органического вещества и высоком уровне поступления железа.

Иногда роль органического вещества в синтезе ферригидрита маскируется влиянием кислотности. Приведем некоторые данные на этот счет. В гумусовом горизонте бурой лесной автоморфной почвы на возвышенности (Литва) методом микродифракции электронов нами найден марганцевый ферригидрит. Возможно, что его образование связано с подкислением среды в гумусовых горизонтах, где величина рН солевой вытяжки опускается до 6.4-6.8, против 7.2-7.6 в нижележащих горизонтах, где ферригидрит отсутствует. На том же опытном участке на расстоянии 300 м в низине в оглеенной бурой почве слабоокристаллизованный ферригидрит отсутствует, так как не может существовать в восстановительных условиях. Известно, что при уменьшении величины Eh и проникновении ионов Fe2+ в решетку ферригидрита, он растворяется, а из растворенного железа образуется стабильный гетит. Именно гетит и присутствует в бурой лесной оглеенной почве.

Ферригидрит найден в железисто-гумусовом подзоле на территории северного Квебека, Канада. Гидроксид присутствует в гор. Bfc на глубине 15-21 см. Реакция среды кислая: рН водной вытяжки 5.1. В почве много дитионито- и оксала- торастворимого железа: 9.6 и 10.3% соответственно. Полная растворимость кислым оксалатом аммония (Fe0KC:Feдцб ~ 1) типична для ферригидрита как слабоупорядоченного гидроксида железа.

3. Методы отбора и подготовки почвенных образцов для определения двухвалентного железа в почвах

Методом микродифракции электронов ферригидритнайден в дерновых лесных почвах Окско-Мещерского Полесья во Владимирской обл. В одном из разрезов ферригидрит образовался совместно с гетитом в гор. Вf на глубине 17- 34 см. Здесь степень упорядоченности частиц гетита различная и иногда настолько низкая, что они близки к рентгеноаморфному состоянию. Установлено образование псевдоморфоз гетита по частицам ферригидрита. В другом разрезе ферригидрит образовался в гор. ВС на глубине 103-176 см. Он представлен бесформенными "обрывками" и округлыми спутано-волокнистыми образованиями, тесно ассоциированными со слоистыми силикатами.

Характерно формирование ферригидрита в молодых почвах на элювии-делювии гранита на Карельском перешейке. Ферригидрит обнаружен в очень кислых почвах.

Ферригидрит шире распространен в лесных почвах Русской равнины, чем в степных. Он образуется из неорганических и гумусовых гидроксокомплексовFe(III). Такие комплексы выявлены Дегтяревой в воде Яхромской поймы.( Дегтярева, 1990).

Ферригидрит характерен для кислых почв (горизонтов) гумидных ландшафтов. В бурой лесной почве он образуется в гумусовом горизонте. Но чаще в подбурах, буроземах, дерново-подзолистых и лесных дерновых почвах ферригидрит образуется в иллювиальных горизонтах.

Химическая формула фероксигита βFeOOH. Структуру фероксигита составляют расположенные по закону плотнейшей упаковки ионы О2- и ОН", при этом в половине октаэдрических положений статистически распределены ионы Fe3+. Важно отметить, что структура фероксигита идентична структуре оксида марганца ахтенскита ɛМn02, что способствует образованию марганцевого фероксигита в почвах. Параметры гексагональной ячейки фероксигита равны: а = 0.293 нм и с = 0.460 нм. Параметр а соответствует стороне основания октаэдра, с - толщине двух слоев плотнейшей гексагональной упаковке ионов О2- и ОН". Локальная структура (то есть состав кластеров) фероксигита близка структуре гематита.

Свободная энергия образования тонкодисперсного фероксигита AG0 = -483.9 кДж/моль Это значение выше, чем у лепидокрокита и, тем более, у гетита и отражает низкую термодинамическую стабильность фероксигита.В опыте при температуре 60°. Сфероксигит в течение 6 ч полностью превратился в гетит. При температуре 80 °С он частично трансформировался в гематит. (Дегтярева, 1990).

Фероксигит - ферримагнетик с низкой температурой Кюри (155 °С). Сильное варьирование в степени упорядоченности приводит к тому, что образуются как "магнитная", так и "немагнитная" его разновидности. У изученного нами крупнокристаллического образца синтетического фероксигита удельная магнитная восприимчивость достигает 5000 х Ю-6 см3/г, а тонкокристаллического всего 400 х Ю-6 см3/г. Магнитная восприимчивость более тонких кристаллов еще ниже. В почвах встречаются преимущественно дисперсные кристаллы фероксигита с низкой магнитной восприимчивостью. Наши исследования с использованием метода микродифракции электронов и энергодисперсионного анализа показали, что в почвах чисто железистый фероксигит 8FeOOH встречается редко. Чаще присутствует марганцевый фероксигит. Содержание марганца в нем может колебаться в очень широких пределах: иногда оно оказывается сопоставимым с количеством железа. (Водяницкий, 1998).

Карлсон и Швертман подробно изучали природные и синтетические образцы фероксигита. Синтезировали фероксигит путем окисления раствора FeCl2 с помощью Н202 и под воздействием основания NH4(OH) или NaOH. Дефицит протонов в ходе синтеза (рост величины рН с 5 до 8) приводит к окристаллизованности частиц фероксигита, уменьшению его удельной поверхности, к увеличению устойчивости к действию кислого оксалата аммония (в темноте).

В одном из природных образцов трехкратная обработка оксалатом в темноте привела к 100% растворении частиц ферригидрита, 85% - фероксигита, 50% - лепидокрокита и 10% - гетита.

Незначительное замещение железа на марганец (-5%) существенно повышает устойчивость частиц марганцевого фероксигита. Этот факт установлен нами при анализе действия реактива Тамма на свету на дерново-подзолистую почву на пермских красноцветных отложениях. В почве из пахотного горизонта обнаружен марганцевый фероксигит (5% Мn), частицы которого имеют явно биогенное происхождение. Они представляют собой тонкие пленки и спутано-волокнистые агрегаты, включающие реликты бактериальных форм. Но несмотря на биогенную природу марганцевого фероксигита, он оказался очень устойчивым к воздействию реактива Тамма. Такая устойчивость марганцевого фероксигита тем более примечательна, что присутствующий в той же почве гематит почти полностью растворился реактивом Тамма. Высокая химическая стабильность фероксигита удивительна. Ее можно объяснить только стабилизирующим влиянием определенного количества Мn в решетке фероксигита или крупными размерами частиц.

Высокая распространенность в лесных почвах фероксигита несколько противоречит данным, полученным ранее методом дифференциальной рентгендифрактометрии. Изучение иллювиальных горизонтов подзолов и псев-дофибровоглеенных лесных почв Германии, Бельгии, Великобритании методом рентгендифрактометрии показало, что в них содержатся ферригидрит, гетит и реже лепидокрокит, но фероксигит не обнаружен . Причина несоответствия данных электронной просвечивающей микроскопии и рентгендифрактометрии состоит, видимо, в том, что идентификация в почвах ферригидрита методом рентгендифрактометрии основывается на максимальном отражении (110), приходящимся на d = 0.252-0.256 нм. Однако наэтот же интервал приходится максимальный рефлекс (100) фероксигита.

Не способствовало поиску фероксигита в почвах и бытовавшее ранее мнение, что он образуется только абиогенно при рН >7 . Но позже было доказано его широкое распространение в умеренно кислых почвах, причем оказалось, что частицы фероксигита включают реликты тех же железоокисляющих бактерий, что и частицы ферригидрита. Таким образом, предположение, что образование ферригидрита связано с деятельностью железобактерий, а фероксигита с их отсутствием, оказалось неверным. В большей степени влияют другие факторы: значения и участие органическихлигандов. Для образования ферригидрита благоприятны высокие значения редокс потенциала и обилие органических лигандов, а для фероксигита переменные значения Ен и дефицит органического вещества. ( Водяницкий, 1998).

Применение микродифракции электронов показало, что фероксигит чаще встречается в почвах, чем полагали раньше. Нами выявлено большое количество частиц этого минерала в составе железистых конкреций в элювиальном горизонте (рН солевой 5.2) дерново-подзолистой почвы на покровных суглинках (Московская обл.). Значительное количество марганцевого фероксигита обнаружено в железистых конкрециях пахотного горизонта дерново-подзолистой почвы на красноцветных пермских отложениях (Пермский край). В мелкоземе его содержание было ниже. Такое же соотношение в содержании фероксигита установлено в дерново-подзолистой почве на ленточных глинах (Новгородская обл.). В большом количестве фероксигит найден в конкрециях и в меньшем в мелкоземе почвы из элювиального горизонта.

Фероксигит обнаруживают в песчаных почвообразующих породах. Карлсон и Швертман выявили фероксигит-содержащие образцы в осадках легкого состава, включая гравий, на двух участках на территории юго-западной Финляндии. Обсуждая проблему генезиса фероксигита, эти авторы отнесли к благоприятным условия, существующие в высокопористых песчаных осадках на достаточной глубине от поверхности, где в воде содержатся как Fe(III), так и Fe(II). Отметим, что в легких почвах Fe(II) и Мn(II) меньше сорбируются слоистыми силикатами, что способствует выпадению железа и марганца в осадок и синтезу фероксигита и марганцевого фероксигита. При этом также облегчается синтез вернадита Мn02, который каталитически влияет на окисление Fe(II). Благодаря этому марганцевый фероксигит чаще синтезируется в легких почвах и осадках, чем в тяжелых.( Швертман, 1988, Карлсон, 1988).

Лепидокрокит. Химическая формула гидроксида γFeOOH. По Линдсею свободная энергия его образования Дб = -483.9 кДж/моль. Эта величина больше, чем энергия образования гетита, поэтому термодинамически лепидокрокит менее стабилен. Стандартный окислительно-восстановительный потенциал Еа - 0.86 В. Плотность гидроксида 4.09 г/см3.

Кристаллическое строение гидроксида орторомбическое, как и гетита. Сдвоенные ленты Fe- октаэдров чередуются со сдвоенными лентами пустых семивершинников, каждый из которых представляет собой комбинацию тригональной призмы и пирамиды. Параметры элементов ячейки а = 0.388, b = 1.284 и с = 0.307 нм. Ленты слабо связаны между собой, что обусловливает слоистую структуру гидроксида и пластинчатый габитус кристаллов. Лепидокрокит с высокой упорядоченностью частиц успешно выявляют в почвах методом рентгендифрактометрии по отражению 0.626-0.630 нм.

В лесных и степных почвах распространенность лепидокрокита редкая (3-5%). Это объясняется, видимо, высокой активностью железоокисляющих бактерий, которые способствуют синтезу ферригидрита и фероксигита, но не лепидокрокита. В то же время лепидокрокит распространен в более холодных тундровых почвах. Связано это с тем, что при Т<4-8 °С жизнедеятельность этих бактерий прекращается, что способствует синтезу лепидокрокита. Часто лепидокрокит формируется в осадках в холодное время года при Т= 0-5 °С.( Водяницкий, 1998).

Образование лепидокрокита в почве связывают с переменными редокс-условиями. В восстановительный период Fe(III) редуцируется до Fe(II), а в окислительный Fe(II) окисляется и гидролизуется до γFeOOH. Лепидокрокит образуется через фазу зеленых продуктов, называемых "green rust", это неустойчивая соль, содержащий гидроксид Fe(II) и Fe(III), при этом заряд уравновешивается межслоевыми анионами, чаще всего хлоридом, сульфатом или карбонатом. Это соединение было синтезировано в лаборатории из солей Fe(II), а также обнаруженных условиях в гидроморфных почвах Грин раст находят в почвах рисовникыов. В то же время лепидокрокит образуется в почвах с доминирующими окислительными условиями: в черноземных и каштановых почвах Забайкалья.

Очевидно, что возможно несколько путей образования лепидокрокита. Один из них многократно описанный через фазу гринраста при переменномредокс потенциале Ен. Другой с неясным механизмом (если исключить возможность кратковременного весеннего уменьшения Ен), который приводит к образованию лепидокрокита в степных почвах Забайкалья. Второй, малоизученный путь образования лепидокрокита заслуживает в будущем самого пристального внимания.

Окристаллизованность частиц лепидокрокита, полученного химическим окислением FeCl2, возрастает с ростом величины рН. При рН 4.5 образуются слабоупорядоченные частицы лепидокрокита, а при рН=7 сильно окристаллизованные. В этих условиях отражается стабилизирующее влияние ОН-групп в растворе на структуру гидроксида. Степень окристаллизованности частиц лепидокрокита зависит также от концентрации Fe(II) в растворе: чем она выше при хемогенном синтезе, тем выше степень окристаллизованности .

Мощным ингибитором является кремний: количество лепидокрокита в лесных почвах Великобритании уменьшалось с увеличением содержания Si(OH)4 в почвенном растворе. Содержание лепидокрокита отрицательно коррелирует с атомным отношением Si :Fe в цитрат дитионитовой вытяжке.Лепидокрокит не образуется в глеевых почвах Бангладеш, в которых содержится большое количество Si(OH)4 в почвенном растворе: от 0.7 до 1.0 мМ. В почвах, где содержание дитионит растворимого кремния Si дит достигает максимума, гидроксиды железа остаются рентгеноаморфными. Другой важный ингибитор синтеза лепидокрокита алюминий. Увеличение его количества в растворе FeCl2 в модельном опыте существенно уменьшало долю лепидокрокита, увеличивая долю гетита. На образование лепидокрокита положительно влияют фосфаты. В опыте с окислением сульфата Fe(II) доля лепидокрокита по отношению к гетиту увеличивалась с ростом атомного отношения Р: Fe. В интервале рН от 5 до 8.5 при Р : Fe<0.5% формировался не лепидокрокит, а гетит. При увеличении отношения до Р : Fe> 2% ситуация меняется радикально и среди продуктов окисления обнаруживает только лепидокрокит. Фосфат благоприятствует образованию лепидокрокита за счет поддержания разупорядоченности гринраста, предшественника лепидокрокита. Цитраты и фенолы представляют собой главные компоненты растительных корневых выделений. И те, и другие способны редуцировать Fe(III) в составе (гидр)оксидов до Fe(II). При дальнейшем окислении Fe(II) и гидролизе образуется лепидокрокит. Таким образом, становится понятно, почему этот минерал доминирует вблизи корней растений.

Из других органических кислот почвоведы большое внимание уделяют солям щавелевой кислоты оксалатам, широко распространенным в лесных почвах. Благодаря образованию прочных комплексов, оксалат способствует увеличению концентрации Fe в растворе. Максимальная концентрация оксалата отмечается в ризосфере, в результате чего увеличивается доступность Fe растениям. В подзолистых почвах оксалат как доминирующий органический анион способен значимо влиять на минералогию железа.

Высокодисперсный лепидокрокит с размерами кристаллитов <20 нм полностью растворим оксалатом аммония. Высокая растворимость и большая удельная поверхность характерны для частиц лепидокрокита, образовавшихся в присутствии фосфатов. Это обстоятельство объясняет причину эффективности вивианита Fe3(P04)2 * 8Н20, применяемого как железо-содержащее удобрение для борьбы с хлорозом на карбонатных почвах. Связано это с тем, что в результате окисления и растворения вивианита образуются нано частицы лепидокрокита, неустойчивые к воздействию оксалат ионов в ризосфере. Плохо окристаллизованный лепидокрокит часто встречается в гумусовых горизонтах, где он сохраняется под защитой органических кислот. Это доказано опытом с окислением органического вещества, когда обработка почвы Н202 привела к трансформации лепидокрокита в гетит.

В почвах тяжелого гранулометрического состава лепидокрокит обычно хорошо о кристаллизован. Объясняют это тем, что в глинистых почвах локальная активность Fe(II) в тонких порах достигает высокого уровня.

Лепидокрокит обнаружен в илистой фракции бурых лесных почв на западе среднего Уэльса, Великобритания. Гидроксиды железа анализировали методом рентгендифрактометрии. В гумусовых горизонтах присутствуют только рентгеноаморфные частицы гидроксидов железа. Это согласуется с известной ингибирующей ролью простых органических кислот, таких как щавелевая, препятствующих кристаллизации частиц гидроксидов. В иллювиальных горизонтах этих бурых лесных почв, где содержание органических кислот меньше, частицы гидроксидов в илистой фракции были более упорядоченные, что позволило идентифицировать их с помощью рентгена. В автоморфных почвах лепидокрокит доминирует в переходном гор. А/Вс величиной рН водной вытяжки 5.7-6.5. Здесь содержание лепидокрокита составляет 2.9-3.5% от массы илистой фракции. В гидроморфных разновидностях этих почв в иллювиальных горизонтах доля лепидокрокита еще выше и достигает 3.5-7.3% от массы илистой фракции. Иллювиальные горизонты более кислые (рН водной вытяжки 4.3-4.7). Полученные результаты свидетельствуют о синтезе лепидокрокита из Fe(II) при его окислении преимущественно в гидроморфных, а не в автоморфных почвах.

Лепидокрокит приурочен к определенным новообразованиям в оглеенных почвах. Изучая их, Швертман и Фицпатрик все железистые новообразования из почв Южной Африки - конкреции, охристые пятна, ожелезненные корневые чехлы и т.п. подразделили на две группы: твердые и мягкие. Твердые новообразования выделяются низким содержанием глинистых минералов, мягкие высоким их содержанием. Состав гидроксидов железа был существенно различным. В твердых малоглинистых новообразованиях преобладает гетит, а лепидокрокита в новообразованиях мало: в 70% образцов его менее 10 отн. %.

Картина меняется в мягких высокоглинистых новообразованиях. В них мало гетита-до 10 отн. %. Лепидокрокита гораздо больше: максимум статистического распределения приходится на группу образцов, содержащих 20-30 отн. % лепидокрокита. Таким образом, очевидна приуроченность лепидокрокита к новообразованиям с высоким содержанием глинистых минералов.

Гетит. Химическая формула гидроксида αFeOOH. Свободная энергия образования гетита AG = 492.1 кЛж/моль. Стандартный окислигельно-восстановительный потенциал Е0 = 0.71 В. Плотность 4.37 г/см3 . Гетит имеет орторомбическое строение. Ионы Fe3+ заполняют половину октаэдрических пустот, образованных ионами кислорода в гексагональной упаковке. Каждый ион О2 - имеет 1/2 ненасыщенной валентности, компенсирующейся вхождением Н+ с образованием прочной связи Н-О-Н. Параметры элементарной ячейки а = 0.460,b = 1.000 и с = 0.302 нм. Высокое значение параметра b определяет волосовидную игольчатую форму кристаллов.

Природное разнообразие гетитов выражается в различной степени гид ратированности и замешенности. Когда гетиты имеют избыточную сверх моногидрата воду, их называют гидрогетитами (αFeOOH * nН20). Избыток воды может колебаться от 1-2 до 25-30 моль %. По влиянию, которое избыточная вода оказывает на свойства гидрогетитов, их можно разделить на две группы: до 9 моль % Н20 и свыше. Слабогидратированные частицы имеют текстурированное, волокнистоигольчатое строение, частицы сильноанизотропны, их плотность составляет 3.9 г/см3. Силь-ногидратированные гетиты, напротив, обычно изотропны, размер кристаллов меньше, ниже и плотность 3.6 г/см3.

Замещение железа в решетке гетита изучается методами рештендифрактометрии, мессбауэровской спектроскопии и просвечивающей электронной микроскопии. Сдвиг параметров элементарной ячейки, наблюдаемый на рентгендифракто граммах, иизменение характеристик мессбауэровских спектров обычно связывают с замещением железа на алюминий. Следует, правда, отметить, что уменьшение величины параметра с ячейки гетита может происходить не только за счет вхождения в решетку алюминия, но и марганца или других металлов.

Такой же неоднозначностью страдают и данные мессбауэровской спектроскопии. Исключение составляет электронная микроскопия (включающая энергодисперсионный анализ), которая обеспечивает более ясную информацию о типе замещения железа в решетке гетита. Тем не менее, изменения параметров ячейки гетитов и мессбауэровских характеристик в ряде почв, например в латеритных почвах (оксисолях), действительно связаны с внедрением алюминия в решетку гетита. В последние годы, благодаря применению высоколокальных методов анализа, включая электронную микроскопию, получены однозначные доказательства присутствия в почвах алюмогетитов.

Изоморфное замещение железа на алюминий достигает в гетитах 35 моль %. Это замещение сильно сказывается на свойствах частиц гетитов. Прежде всего, оно приводит к уменьшению размеров частиц гетита и изменению их габитуса Вместо игольчатых частиц, характерных для гетита, алюмогетит в почвах бывает представлен агрегатами мелких слипшихся частиц неправильной формы.

Алюминий повышает химическую устойчивость алюмогетита. В результате алюмогетит гораздо хуже растворим дитионитсодержащими реактивами, чем гетит. Так, для растворения гетитов в латеритных почвах Западной Австралии и Тасмании было достаточно двухкратной обработки ДЦБ, но для растворения сильнозамещенных алюмогетитов потребовалось уже 3 или 4 обработки . Образование гетитов и алюмогетитов происходит в разной геохимической обстановке. Получены важные результаты, связывающие степень замещения железа на алюминий с условиями образования гетитов в почвах. Рентгендифрактометрическое изучение состава гетитов в железистых новообразованиях в почвах восточного побережья Южной Африки показало, что степень замещения железа наалюминийнизкая (от 0 до 15 моль % AI) в новооб- HHMgg в гидроморфных умеренно кислых и карбонатных почвах, но достигала высокого уровня (15-32 моль % А1) вгститах, образующихяв автоморфных сильновыветрелых и сильно кислых почвах. Такое различие объясняется, в первую очередь, высокой активностью алюминия в кислой среде, когда повышается его способность соосаждаться совместно с железом, формируя алюмогетит в кислых автоморфных почвах. Напротив, в гидроморфных почвах с нейтральной реакцией среды алюминий менее подвижен, и формирование гетита происходит из менее "загрязненного" алюминием железо-содержащего раствора.

Важным представляется вопрос о влиянии оглеения почв на степень замещения железа в алюмогетитах. Очевидно, что доля алюминия в составе новообразованного гетита зависит во многом от активности ионов А13+ в почвенном растворе. По мере развития оглеения возможно как уменьшение, так и повышение активности А13+, и, соответственно уменьшение либо увеличение доли алюминия в гетитах.

Уменьшение доли алюминия в гетитах в оглеенных почвах явление распространенное весьма широко. Для ряда оглеенных почв в Западной Австралии и Центральной Европы характерно низкое содержание алюминия в гетитах <5-10 моль % А1. Вероятная причина этого кроется в нейтрализации кислотности оглеенных лесных почв. Восстановление Fe(III) идет с потреблением Н+ и приводит к увеличению рН кислых оглеенных почв, согласно уравнению:

Fe(OH)3 + ЗН+ + е" = Fe2+ + ЗН20.

В результате растворимость алюмосодержащих минералов в нейтральной среде снижается, что уменьшает активность ионов А13+ в почвенном растворе и препятствует образованию алюмогетитов.

Возможна и иная ситуация. В ходе оглеения частицы глинистых минералов лишаются защитной пленки гидроксидов железа и становятся более растворимыми. В результате в кислом растворе повышается активность ионов А13+ и соответственно вероятность синтеза алюмогетитов.

Менее распространено в почвах замещение в структуре гетита железа на марганец. Замещение марганцем происходит в условиях лабораторного синтеза. Уменьшение параметров ячейки синтетического гетита указывает на значительное замещение железа на марганец. Максимальное атомное отношение Мп :Fe = 0.37.

Важно отметить, что образование и состав марганцевого гетита очень существенно зависит от величины рН. При рН отношение Мп :Fe в гетите не достигает 0.07. Но оно резко увеличивается до 0.37 при росте рН до 6. При дальнейшем росте рН до 8-10 и при высокой концентрации марганца в растворе ситуация меняется еще сильнее. Марганец уже не входит в структуру гетита, а образует собственные оксиды (гаусманит), содержащие железо. Иными словами, марганец хуже, чем железо, осаждается в кислой среде, но лучше в щелочной. Это согласуется с известным почвоведам фактом высокой подвижности марганца в кислой среде. Растворение. Известно, что (гидр) оксиды железа растворяются в почвах за счет трех различных механизмов: депротонирования-депротонирования, комплексообразования и редукции. Наименее эффективный пороцесс протежирования-депротонирования. Участие органических лигандов значительно повышает скорость растворения гидроксидов. Но самый эффективный механизм растворения редукционный.

В последние годы уделяется большое внимание особенностям механизмов растворения (гидр)оксидов железа. При этом используется такой новый метод анализа, как массспектрометрия с индуктивно-связанной плазмой. С середины 90-х годов метод используется для определения в почвах состава стабильных изотопов железа, свинца и других металлов. Высокоточные данные об изотопном составе переходных металлов в почвах и осадках дали возможность возникнуть новой, быстро растущей области геохимии: геохимии изотопов. Изотопы железа фракционируются в результате биологических и абиотических процессов, включая бактериальную редукцию. Так, при биологической редукции гидроксида железа (ферригидрита) бактериями Shewanellaalgae в составе новообразованного Fe2+ доля тяжелого изотопа 56Fe уменьшилась в пользу легкого изотопа54Fe по сравнению с исходным ферригидритом.( Дегтярева, 1990).

В отношении абиотической редукции (гидр)оксидов железа установлено следующее. Значительное фракционирование имеет место в ходе растворения роговой обманки в присутствии разичных органических лигандов, включая оксалат. Раствор был обогащен легкими изотопами железа, а степень фракционирования коррелировала с константами прочности связи органических лигандов с ионом Fe3+. При ком-плексообразовании и редукции гетита изотопы железа фракционируются: на начальной стадии предпочтительнее растворяются легкие атомы 54Fe, чем тяжелые Fe, что приводит к нарушению исходного отношения Fe : 56Fe.

За счет процесса растворения (гидр) оксидов отношение изотопов железа в профиле ожелезненных почв значительно варьирует. В ходе подзолообразования в кислых почвах, где растворяются (гидр) оксиды железа, предпочтительно транспортируются легкие изотопы. Накапливаются легкие изотопы в полугидроморфных почвах спеременным редокс-режимом в застойных условиях, где растворение гидроксидов железа контролируется редукционными процессами, фракционирование идет за счет образования Fe2+ в растворе, обогащенном легкими изотопами. Обнаружение факта фракционирования изотопов железа дает исследователям новый, мощный инструмент изучения биогеохимического цикла Fe в почвах. Замещение железа на алюминий в решетке гетита может объяснить некоторые особенности растворения минералов железа в почвах. Так, в бразильских оксисолях микробная редукция сказывается в том, что растворяется гематит, а не гетит. В принципе это соответствует термодинамическим данным о большей устойчивости к проголизу гетита, чем гематита. Распространение. Гетит наиболее распространенный гидроксид железа, особенно в почвах гумидных и полугумидных областей. Синтезу гетита определенно способствует органическое вещество почв. Методом мессбауэровской спектроскопии во многих ортштейнах почвоведы обнаруживают гетит. Однако рассматривать его как единственного представителя гидроксидов железа в ортштейнах, как считалось раньше, в настоящее время уже нельзя. В последние годы с применением электронно-зондового микроанализа и других методов доказано присутствие в составе ортштейнов.

Заключение

Гидроксиды железа по величине изменения стандартной энергии реакций образования подразделяются на термодинамически нестабильные (ферригидрит, фероксигит, лепидокрокит) и стабильный гетит. В последние годы с применением электронной просвечивающей микроскопии доказано образование фероксигита, особенно в составе железо-марганцевых конкреций, что указывает на ведущую роль в синтезе гидроксидов переменных редокс условий.

Установлена важная роль неорганических стабилизаторов структуры гидроксидов железа. При этом каждый из гидроксидов стабилизируется своим химическим элементом: ферригидрит кремнием, фероксигит марганцем, лепидокрокит фосфором, гетит алюминием. Некоторые органические соединения защищают частицы гидроксидов железа от редукции. Ферригидрит и фероксигит образуется при участии биоты, тогда как образование лепидокрокита и гетита идет и абиотическим путем.

Гидроксидогенез железа сильнее выражен в подзолистых почвах, чем в черноземных, и в железо-марганцевых ортштейнах сильнее, чем в мелкоземе. С течением времени происходит превращение нестабильных гидроксидов в стабильные (гидроксиды: фероксигит спонтанно переходит в гетит, а ферригидрит в гематит или гетит.


. Собраны и обобщены сведения о методах подготовки проб и пяти различных методах определения двухвалентного железа в почвах: сульфосалицинатный метод, комплексонометрические методы (2 разные модификации) , колориметрические методы (2 разные модификации),

. Составлен список необходимых реактивов и оборудования на каждый анализ

. Изучена методика по определению двухвалентного железа, приведенная в ГОСТ 27395-87.

Список литературы

1.Орлов, Дмитрий Сергеевич. Химия почв: Учеб. для вузов по спец."Агрохимия и почвоведение" / Д.С. Орловю - М.: Изд-во МГУ, 2010. - с.391-392.

2.Залуцкий А.А. Диагностика соединений железа в почвенно-минеральных объектах (современные направления и перспективы физико-химических методов исследования / А.А. Залуцкий, В.Ф. Бабанин, Н.А. Седьмов // Известия вузов. Химия и химическая технология. - Б.м. - 2 009. - Т. 47, № 6. - С. 49-53.

3.Аринушкина Е. В. Руководство по химическому анализу почв: учебное посособие для студ. вузов / Е.В. Аринушкина. - Изд. 2-е, перераб. и доп..-Москва: Изд-во Моск. ун-та, 2008. - 87с.

4.Воробьева, Людмила Андреевна. Химический анализ почв: Учеб. для студентов вузов, обучающихся по направлению и спец. " Почвоведение " / Л.А. Воробьева. - М.: Изд-во Моск. ун-та, 2008. - 271 с.: табл., граф. - Библиогр.: с. 257. - с. 258-260.

5.Кудрявцева А.П. Химический анализ почв: руководство к лабораторно-практическим занятиям для студентов / А. П. Кудрявцева. - К азань: Б.и., 1971.Ч. 1. - 1971.- 88 с.

6.Химический анализ горных пород и минералов. - Москва: Б.и., 2009.-248с.

Похожие работы на - Методы определения двухвалентного железа в почве

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!