Методы коммутации информации данных в сетях ЭВМ

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Информатика, ВТ, телекоммуникации
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    145,78 Кб
  • Опубликовано:
    2014-02-25
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Методы коммутации информации данных в сетях ЭВМ















Методы коммутации информации данных в сетях ЭВМ

коммутация каналообразующий связь

Введение

Коммутация - процесс соединения абонентов коммуникационной сети через транзитные узлы.

Коммуникационные сети должны обеспечивать связь своих абонентов между собой. Абонентами могут выступать ЭВМ, сегменты локальных сетей, - аппараты или телефонные собеседники. Как правило, в сетях общего доступа невозможно предоставить каждой паре абонентов собственную физическую линию связи, которой они могли бы монопольно «владеть» и использовать в любое время. Поэтому в сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает разделение имеющихся физических каналов между несколькими сеансами связи и между абонентами сети.

Каждый абонент соединен с коммутаторами индивидуальной линией связи, закрепленной за этим абонентом. Линии связи, протянутые между коммутаторами, разделяются несколькими абонентами, то есть используются совместно.

Коммутация по праву считается одной из самых популярных современных технологий. Коммутаторы по всему фронту теснят мосты и маршрутизаторы, оставляя за последними только организацию связи через глобальную сеть. Популярность коммутаторов обусловлена, прежде всего, тем, что они позволяют за счет сегментации повысить производительность сети. Помимо разделения сети на мелкие сегменты, коммутаторы дают возможность создавать логические сети и легко перегруппировывать устройства в них. Иными словами, коммутаторы позволяют создавать виртуальные сети.

В 1994 году компания IDC дала свое определение коммутатора локальных сетей: коммутатор - это устройство, конструктивно выполненное в виде сетевого концентратора и действующее как высокоскоростной многопортовый мост; встроенный механизм коммутации позволяет осуществить сегментирование локальной сети, а также выделить полосу пропускания конечным станциям в сети.

Впервые коммутаторы появились в конце 1980-х годов. Первые коммутаторы использовались для перераспределения пропускной способности и, соответственно, повышения производительности сети. Можно сказать, что коммутаторы первоначально применялись исключительно для сегментации сети. В наше время произошла переориентация, и теперь в большинстве случаев коммутаторы используются для прямого подключения к конечным станциям.

Широкое применение коммутаторов значительно повысило эффективность использования сети за счет равномерного распределения полосы пропускания между пользователями и приложениями. Несмотря на то, что первоначальная стоимость была довольно высока, тем не менее, они были значительно дешевле и проще в настройке и использовании, чем маршрутизаторы. Широкое распространение коммутаторов на уровне рабочих групп можно объяснить тем, что коммутаторы позволяют повысить отдачу от уже существующей сети. При этом для повышения производительности всей сети не нужно менять существующую кабельную систему и оборудование конечных пользователей.

1.Общие принципы организации ЭВМ

Основные понятия и терминология

Сеть ЭВМ - это совокупность средств вычислительной техники (СВТ), представляющих собой множество ЭВМ, объединенных с помощью средств телекоммуникации (СТК). Сеть ЭВМ реализует две основные функции:

·        Обработку данных

·        Передачу данных

Наряду с термином ЭВМ широко используются близкие по смыслу термины «компьютерная сеть» и «вычислительная сеть», которые обычно рассматриваются как синонимы.

Сеть ЭВМ представляет собой множество ЭВМ (компьютеров), объединенных в единую сеть с помощью средств телекоммуникации, образующих базовую сеть передачи данных (СПД). Другими словами, «сеть ЭВМ» или «компьютерная сеть» - это объединение ЭВМ (компьютеров), в отличие, например, от телефонной сети, объединяющей автоматически телефонные станции (АТС).

Отдельные сети ЭВМ могут объединяться и образовывать сверхбольшие глобальные сети. Такое объединение сетей приводит к иерархической структуре, в которой небольшие сети являются подсетями сетей более высокого ранга. Сеть ЭВМ реализует передачу и обработку данных. Однако часто можно услышать или прочитать, что в сети передается и обрабатывается информация. Среди всех существующих определений понятий «данные» и «информация» из Словаря русского языка С.И.Ожегова:

Данные - это сведения, необходимые для какого-нибудь вывода, решения.

Информация - сведения, осведомляющие о положении дел, о состоянии чего-нибудь.

Из этих определений следует, что данные - это любое множество сведений, а информация - это сведения, полученные с некоторой целью и несущие в себе новые знания для того как эту информацию получает.

Средства вычислительной техники (СВТ) реализуют обработку данных и представляют собой совокупность ЭВМ, вычислительных комплексов и вычислительных систем различных классов.

Смысловое значение термина ЭВМ (электронная вычислительная машина, компьютер) - это совокупность технических средств, предназначенных для организации ввода, хранения, автоматической обработки по заданной программе и вывода данных(информации).

К техническим средствам относятся:

·        Центральный процессор (ЦП);

·        Оперативная (основная) память (ОП);

·        Внешние устройства (ВУ), включающие устройства ввода-вывода (УВВ) и внешние запоминающие устройства (ВЗУ);

·        Процессоры (каналы) ввода-вывода (ПВВ, КВВ).

Вычислительный комплекс (ВК) - совокупность технических средств, содержащая несколько центральных процессоров и представляющая собой одну ЭВМ с несколькими ЦП (МПВК - многопроцессорный ВК) или объединение нескольких однопроцессорных ЭВМ (ММВК - многомашинный ВК).

Основной целью построения ВК является обеспечение высокой надежности и/или производительности, не достижимой для однопроцессорных ЭВМ.

Вычислительная система (ВС) - совокупность технических и программных средств, ориентированный на решение определенной совокупности задач.

К программным средствам относятся:

·        Системное программное обеспечение, представляющее собой совокупность стандартных программных средств, обеспечивающих функционирование ВС и включающих систему (ОС), основными составляющими которой для организации эффективного функционирования ВС, являются управляющие программы (УП), а также трансляторы с алгоритмических языков и библиотеки математических и служебных программ;

·        Прикладное программное обеспечение в виде множества прикладных программ (ПП), обеспечивающих ориентацию ВС на решение задач конкретной области применения.

Выполнение задач в ВС называется вычислительным процессом.

К программным средствам ВС тесно примыкают базы данных и системы управления базами данных, которые можно рассматривать как самостоятельную составляющую ВС - информационное обеспечение.

База данных (БД) - упорядоченные наборы данных (файлы), имеющие определенную структуру.

Системы управления базами данных (СУБД) - специальные программные средства, предназначенные для формирования, модификации и выборки данных.

Компьютерная сеть кроме функции ввода, хранения, обработки и вывода данных реализует функции по передаче данных на значительные расстояния между абонентами сети, в качестве которых выступают ВС и пользователи сети, имеющие доступ к ресурсам сети с помощью удаленных терминалов.

Средства телекоммуникации (СТК) реализуют передачу данных и образуют телекоммуникационную сеть (сеть связи, сеть передачи данных), состоящую из узлов связи (УС), объединенных каналами связи (КС) для передачи данных.

Канал связи (КС) включает в себя линию связи (ЛС) и каналообразующее оборудование.

Линия связи (ЛС) представляет собой физическую среду передачи, по которой передаются сигналы, вместе с аппаратурой передачи данных (АПД), формирующей сигналы, соответствующие типу ЛС.

Аппаратура передачи данных (АПД) - осуществляет преобразование сигналов в соответствии с типом среды передачи (линии связи). К АПД относятся различного типа модемы, используемые в телефонных и высокочастотных КС: телефонные, кабельные, радиомодемы, xDSL - модемы, адаптеры и т.д.

Каналообразующее оборудование (КО) предназначено для формирования канала передачи данных между двумя взаимодействующими абонентами, при этом в одной и той же линии связи одновременно может быть сформировано несколько каналов за счет использования различных методов уплотнения. Обычно каналообразующее оборудование входит в состав узлов телекоммуникационной сети.

Основными функциями узлов связи являются:

·        Маршрутизация, заключающаяся в выборе направления передачи (маршрута) данных;

·        Коммутация, заключающаяся в установлении физического или логического соединения между входными портами узла;

·        Мультиплексирование, заключающееся в объединении нескольких

Входящих в узел потоков данных в один входящий из узла поток;

Демультиплексирование, заключающееся в разделении одного входящего в узел потока данных на несколько выходящих из узла потоков.

2.Методы коммутации информации в сетях ЭВМ

Под коммутацией данных понимается их передача, при которой канал передачи данных может использоваться попеременно для обмена информацией между различными пунктами информационной сети

Коммутация основана на использовании маршрутизации, определяющей путь, по которому в соответствии с адресом назначения передаются данные. Осуществляется коммутация функциональными блоками всех систем информационной сети.

Коммутация является основой технологии сети с маршрутизацией данных. В зависимости от задач, поставленных перед коммуникационной сетью, используют несколько методов коммутации.Каждый из них определяется различными штабелями уровней области Взаимодействия Открытых Систем (ВОС).У каждого из методов коммутации имеется своя область применения, обусловленная его особенностями. Отсюда следует целесообразность сочетания разных методов коммутации на сетях, объединяющих большое число абонентов с отличающимися друг от друга величинами нагрузки, характером ее распределения во времени, объемами сообщений, используемой оконечной аппаратурой. На таких сетях при небольшой средней нагрузке и передаче сообщений большими массивами в небольшое число адресов доля потери времени на установление соединения сравнительно невелика, и предпочтительнее использовать систему с коммутацией каналов. При передаче же многоадресных сообщений, необходимости обеспечения приоритетности сообщениям высокой категории срочности и при большой загрузке абонентских установок более эффективно использовать систему с коммутацией сообщений. При передаче коротких сообщений в интерактивном (диалоговом) режиме наиболее целесообразно использовать коммутацию пакетов.

Выбор методов коммутации - достаточно сложная оптимизационная задача. Она решается исходя из требований к транспортной сети, которые в свою очередь определяются особенностями графика, классом пользователей и показателями качества их обслуживания.

В коммутации блоков данных участвуют (рис.094) N нижних уровней взаимодействующих друг с другом абонентских систем или административных систем, а также расположенных между ними ретрансляционных систем. В зависимости от метода коммутации, число уровней N изменяется от одного до семи.В коммутации блоков данных участвуют N нижних уровней взаимодействующих друг с другом абонентских систем или административных систем, а также расположенных между ними ретрансляционных систем. В зависимости от метода коммутации, число уровней N изменяется от одного до семи. В коммутации блоков данных участвуют (рис.094) N нижних уровней взаимодействующих друг с другом абонентских систем илиадминистративных систем, а также расположенных между ними ретрансляционных систем. В зависимости от метода коммутации, число уровней N изменяется от одного до семи.

2.1 Коммутация каналов

При коммутации каналов коммутационная сеть образует между конечными узлами непрерывный составной физический канал из последовательно соединенных коммутаторами промежуточных канальных участков. Условием того, что несколько физических каналов при последовательном соединении образуют единый физический канал, является равенство скоростей передачи данных в каждом из составляющих физических каналов. Равенство скоростей означает, что коммутаторы такой сети не должны буферизовать передаваемые данные.

В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал. И только после этого можно начинать передавать данные.

Например, если сеть, изображенная на рисунке 1, работает по технологии коммутации каналов, то узел 1, чтобы передать данные узлу 7, сначала должен передать специальный запрос на установление соединения коммутатору A, указав адрес назначения 7. Коммутатор А должен выбрать маршрут образования составного канала, а затем передать запрос следующему коммутатору, в данном случае E. Затем коммутатор E передает запрос коммутатору F, а тот, в свою очередь, передает запрос узлу 7. Если узел 7 принимает запрос на установление соединения, он направляет по уже установленному каналу ответ исходному узлу, после чего составной канал считается скоммутированным, и узлы 1 и 7 могут обмениваться по нему данными.

Рисунок 1

Достоинства коммутации каналов

. Постоянная и известная скорость передачи данных по установленному между конечными узлами каналу. Это дает пользователю сети возможности, на основе заранее произведенной оценки необходимой для качественной передачи данных пропускной способности установить в сети канал нужной скорости. 2. Низкий и постоянный уровень задержки передачи данных через сеть. Это позволяет качественно передавать данные, чувствительные к задержкам (называемые также трафиком реального времени) - голос, видео, различную технологическую информацию.

Недостатки коммутации каналов

. Отказ сети в обслуживании запроса на установление соединения. Такая ситуация может сложиться из-за того, что на участке сети соединение нужно установить вдоль канала, через который уже проходит максимально возможное количество информационных потоков. Отказ может случиться и на конечном участке составного канала - например, если абонент способен поддерживать только одно соединение.

. Нерациональное использование пропускной способности физических каналов. Та часть пропускной способности, которая отводится составному каналу после установления соединения, предоставляется ему на все время, т.е. до тех пор, пока соединение не будет разорвано. Однако абонентам не всегда нужна пропускная способность канала во время соединения. Невозможность динамического перераспределения пропускной способности ограничивает сеть с коммутацией каналов, так как единицей коммутации здесь является информационный поток в целом.

. Обязательная задержка перед передачей данных из-за фазы установления соединения.

Техника коммутации каналов хорошо работает в тех случаях, когда нужно передавать только трафик телефонных разговоров.

Коммутаторы, а также соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов. Для этого они должны быть высокоскоростными и поддерживать какую-либо технику мультиплексирования абонентских каналов.

§   технология частотного мультиплексирования (Frequency Division Multiplexing, FDM);

§   технология мультиплексирования с разделением времени (Time Division Multiplexing, TDM). [2]

2.3    Коммутация пакетов

При коммутации пакетов (КП) сообщения разбиваются на меньшие части, называемые пакетами, каждый из которых имеет установленную максимальную длину.

Эти пакеты нумеруются и снабжаются адресами и прокладывают себе путь по сети (методом передачи с промежуточным хранением), которая их коммутирует.

Таким образом, множество пакетов одного и того же сообщения может передаваться одновременно, что и является одним из главных преимуществ систем коммутации пакетов (передача данных напоминает течение по трубе) (Таблица 1). Приемник в соответствии с заголовками пакетов выполняет сшивку пакетов в исходное сообщение и отправляет его получателю. Благодаря возможности не накапливать сообщения целиком в узлах коммутации не требуется внешних запоминающих устройств, и вполне можно ограничиться оперативной памятью, а в случае ее переполнения использовать различные механизмы «притормаживания» передаваемых пакетов в местах их генерации.

Части одного и того же сообщения могут в одно и тоже время находиться в различных каналах связи, более того, когда начало сообщения уже принято, его конец отправитель может еще даже не передавать в канал.

Таблица 1. Параметры метода коммутации пакетов

Параметры передачи данных

Коммутация пакетов

Скорость передачи

Средняя

Избыточность

Наибольшая

Возможность диалога

Есть

Задержка установления соединения

Наименьшая

Использование канала

Наилучшее

Потребность в промежуточной памяти

Ограниченная

Вероятность отказа из-за занятости каналов

Средняя

Возможность работы абонентов с разными скоростями и типами терминалов

Есть


·        Вводимое в сеть сообщение разбивается на части - пакеты длиной обычно до 1000-2000 единичных интервалов, содержащие адрес получателя. Указанное разбиение осуществляется или в оконечном пункте, если он содержит ЭВМ, или в ближайшем узле коммутации;

·        Если разбиение сообщения на пакеты происходит в узел коммутации, то дальнейшая передача пакетов осуществляется по мере их формирования, не дожидаясь окончания приема в узле коммутации целого сообщения;

·        В узле пакетной коммутации пакет запоминается в оперативной памяти (ОЗУ) и по адресу определяется канал, по которому он должен быть передан;

·        Если этот канал к соседнему узлу свободен, то пакет немедленно передается на соседний узел КП, в котором повторяется та же операция;

·        Если канал к соседнему узлу занят, то пакет может небольшое время храниться в ОЗУ до освобождения канала;

При хранении пакеты устанавливаются в очереди по направлению передачи, причем длина очереди не превышает 3-4 пакетов. Если длина очереди превышает допустимую, то пакеты стираются из памяти ОЗУ и их передача должна быть повторена. Пакеты, относящиеся к одному сообщению, могут передаваться по разным маршрутам в зависимости от того, по какому из них в данный момент они с наименьшей задержкой могут пойти к адресату. В связи с тем, что время прохождения до сети пакетов одного сообщения может быть различным (в зависимости от маршрута и задержек в узлах коммутации), порядок их перехода в ОП (к получателю) может не соответствовать порядку пакетов.

2.1.1 Датаграммный метод (ДМ)

Существует два способа пакетной коммутации. Первый способ - это способ датаграммной, второй - способ виртуальных соединений.

Датаграммный метод эффективен для передачи коротких сообщений. Он не требует громоздкой процедуры установления соединения между абонентами. Термин датаграмма применяют для обозначения самостоятельного пакета движущегося по сети независимо от других пакетов. Пакеты доставляются получателю различными маршрутами. Эти маршруты определяются сложившейся динамической ситуацией на сети. Каждый пакет снабжается необходимым служебным маршрутным признаком, куда входит и адрес получателя.

Пакеты поступают на прием не в той последовательности, в которой они были переданы, поэтому приходиться выполнять функции связанные со сборкой пакетов.Получив датаграмму, узел коммутации направляет ее в сторону смежного узла максимально приближенного к адресату. Когда смежный узел подтверждает получение пакета, узел коммутации стирает его в своей памяти. Если подтверждение не получено, узел коммутации отправляет пакет в другой смежный узел, и так до тех пор, пока пакет не будет принят.

Все узлы, окружающие данный узел коммутации ранжируются по степени близости к адресату, и каждому присваивается 1, 2 и т.д. ранг.

Пакет сначала посылается в узел первого ранга, при неудаче - в узел второго ранга и т.д.Эта процедура называется алгоритмом маршрутизации. Существуют алгоритмы, когда узел передачи выбирается случайно, и тогда каждая дейтаграмма будет идти по случайной траектории.

Дейтаграммный режим объединяет в себе сетевой и транспортный уровень, поэтому протокол передачи сети Internet называется протоколом TCP/IP, где протокол ТСР - протокол четвертого транспортного уровня, а IP - сетевой протокол.

Дейтаграммный режим используется, в частности, в Internet в протоколах UDP (User Datagram Protocol) и TFTP (Trivial File Transfer Protocol).

2.1.2 Виртуальный метод

В виртуальном методе предполагается предварительное установление маршрута передачи всего сообщения от отправителя до получателя с помощью специального служебного пакета - запроса на соединение. Для этого пакета выбирается маршрут, который в случае согласия получателя этого пакета на соединение закрепляется для прохождения по нему всего трафика. Т.е. пакет запроса на соединение как бы прокладывает путь через сеть, по которому пойдут все пакеты, относящиеся к этому вызову. В этом есть что-то общее от процедуры коммутации каналов, когда сигнал запроса проходит через сеть, и в соответствии с его путем, происходит коммутация сквозного канала, по которому потом пойдут данные. Здесь есть принципиальное отличие, которое отражено уже в названии самого соединения. В телефонной сети коммутируется реальный физический тракт, а в пакетной сети - воображаемый (виртуальный) тракт. Виртуальным он называется потому, что ему соответствует не сам канал, а логическая связка между отправителем и получателем.

В виртуальной сети абоненту-получателю направляется служебный пакет, прокладывающий виртуальное соединение. В каждом узле этот пакет оставляет распоряжение вида: пакеты k-ого виртуального соединения, пришедшие из i-ого канала следует направлять в j-й канал. Т. о виртуальное соединение существует только в памяти управляющего компьютера. Дойдя до абонента-получателя, служебный пакет запрашивает у него разрешение на передачу, сообщив какой объем памяти понадобится для приема. Если его компьютер располагает такой памятью и свободен, то посылается согласие абоненту-отправителю на передачу сообщения. Получив подтверждение, абонент-отправитель приступает к передаче сообщения обычными пакетами.

Пакеты беспрепятственно проходят друг за другом по виртуальному соединению и в том же порядке попадают абоненту-получателю, где, освободившись от концевиков и заголовков, образуют передаваемое сообщение, которое направляется на 7 уровень. Виртуальное соединение может существовать до тех пор, пока отправленный одним из абонентов, специальный служебный пакет не сотрет инструкции в узлах. Режим виртуальных соединений эффективен при передаче больших массивов информации и обладает всеми преимуществами методов коммутации каналов и пакетов.

Преимущества режима виртуального соединения перед диаграммным заключается в обеспечении упорядоченности пакетов, поступающих в адрес получателя и сравнительной простоте управления потоком данных вдоль маршрута в целях ограничения нагрузки в сети и возможности предварительного резервирования ресурсов памяти на узлах коммутации.

К недостаткам следует отнести отсутствие воздействия изменившейся ситуации в сети на маршрут, который не корректируется до конца связи. Виртуальная сеть в значительно меньшей степени подвержена перегрузкам и зацикливанию пакетов, за что приходится платить худшим использованием каналов и большей чувствительностью к изменению топологии сети. [1]

3.Коммутация сообщений

Коммутация сообщений по своим принципам близка к коммутации пакетов. Под коммутацией сообщений понимается передача единого блока данных между транзитными компьютерами сети с временной буферизацией этого блока на диске каждого компьютера. Пример изображен на рисунке 2. Сообщение в отличие от пакета имеет произвольную длину, которая определяется не технологическими соображениями, а содержанием информации, составляющей сообщение. Транзитные компьютеры могут соединяться между собой как сетью с коммутацией пакетов, так и сетью с коммутацией каналов. Сообщение (это может быть, например, текстовый документ, файл с кодом программы, электронное письмо) хранится в транзитном компьютере на диске, причем довольно продолжительное время, если компьютер занят другой работой или сеть временно перегружена.

Рисунок 2

По такой схеме обычно передаются сообщения, не требующие немедленного ответа, чаще всего сообщения электронной почты. Режим передачи с промежуточным хранением на диске называется режимом "хранения-и-передачи" (store-and-forward). Режим коммутации сообщений разгружает сеть для передачи трафика, требующего быстрого ответа, например трафика службы WWW или файловой службы.

Количество транзитных компьютеров обычно стараются уменьшить. Если компьютеры подключены к сети с коммутацией пакетов, то число промежуточных компьютеров уменьшается до двух. Но если компьютеры связаны между собой телефонной сетью, то часто используется несколько промежуточных серверов, так как прямой доступ к конечному серверу может быть в данный момент невозможен из-за перегрузки телефонной сети или экономически невыгоден из-за высоких тарифов на дальнюю телефонную связь.

Техника коммутации сообщений появилась в компьютерных сетях раньше техники коммутации пакетов, но потом была вытеснена последней, как более эффективной по критерию пропускной способности сети. Запись сообщения на диск занимает достаточно много времени, и кроме того, наличие дисков предполагает использование в качестве коммутаторов специализированных компьютеров, что влечет за собой существенные затраты на организацию сети.[2]

4.Сравнительный анализ

Любая сеть представляет собой в общем случае каналы связи с подключенными к ним узлами сети - абонентами с помощью коммутационного оборудования.

Абонентами сети могут быть локальные сети, удаленные компьютеры, факс-аппараты или просто люди, которые общаются с помощью телефонных аппаратов.

Чем больше абонентов в сети, тем сложнее предоставить каждому из них отдельный канал связи, по которому они могли бы взаимодействовать монопольно в течение длительного времени. Очевидно, что рано или поздно возникнет задача определенным образом распределить все сеансы связи между абонентами этой сети. Другими словами возникнет необходимость в определенном способе коммутации абонентских линий в сети.

В процессе развития технологии коммутации выделись три основных метода коммутации:

1.       Коммутация каналов

2.       Коммутация сообщений

.        Коммутация пакетов

На рисунке 3 представлена сравнительная характеристика основных методов коммутации информации данных. [6]

Рисунок 3 - Сравнительная характеристика методов коммутации.

5.Другие виды коммутации

.1 Смешанная коммутация

Смешанная коммутация - комплексный транспортный сервис, обеспечивающий коммутацию каналов (при N=1) и коммутацию пакетов (при N=3).

Смешанная коммутация, именуемая также гибридной коммутацией, осуществляется Цифровой Сетью с Интегральным Обслуживанием (ЦСИО). Для этой цели в ней используются узлы смешанной коммутации, способные выполнять оба видакоммутации. При смешанной коммутации, имеющиеся в коммуникационной сети логические каналы, в первую очередь, используются для коммутации каналов и создания последовательностей, соединяющих пары административных систем илиабонентских систем. По свободным каналам осуществляется передача блоков данных в режиме коммутации пакетов. Естественно, что в соответствии с запросами систем соотношение числа каналов, входящих в оба множества все времяменяется.

Рассматриваемая коммутация выполняет коммутацию каналов и пакетов на базе одного и того же оборудования. ЕгоПрограммное Обеспечение позволяет при использовании только физического уровня и физических процессов ретрансляционной системы обеспечить коммутацию каналов. При функционировании физического, канального уровня, сетевого уровня и сетевых процессов ретрансляционная система осуществляет коммутацию пакетов.

5.2    Сквозная коммутация и коммутация с запоминанием

Важным преимуществом сквозной коммутации является очень небольшая задержка блока в ретрансляционной системе. Поэтому рассматриваемая коммутация, обеспечивая коммутацию каналов, ретрансляцию кадров либо ретрансляцию ячеек, используется в сетях скоростной коммутации данных, а также в коммутируемых локальных сетях. Метод сквозной коммутации основан на том, что выбор канала, по которому далее передается блок данных, происходит тотчас, как только прочитан адрес его назначения. Адрес располагается в начальной части блока.

Между тем, сквозная коммутация имеет и ряд недостатков. Первый из них заключается в том, что в этом режиме не обеспечивается выявления ошибок с помощью Контроля циклической избыточности CRC. Правда, в современных высоконадежных сетях это не имеет существенного значения. Второй недостаток сквозной коммутации связан с тем, что блок данных не может быть передан из канала с низкой в канал, работающий с более высокой скоростью. Альтернативой рассматриваемой является коммутация с запоминанием.

Коммутация с запоминанием - способ коммутации, при котором блок данных передается ретрансляционной системой после того, как его содержимое получено ею полностью.

Коммутация с запоминанием является классической технологией, используемой при коммутации пакетов и коммутации сообщений. Она заключается в том, что из принятого ретрансляционной системой пакета либо сообщения извлекаются заголовок, концевик и содержащаяся в нем передаваемая информация. Затем, осуществляется проверка ошибок с помощью Контроля циклической избыточности CRC.

Рассматриваемая коммутация проста, но характеризуется относительно большими задержками, происходящими в ретрансляционных системах. Поэтому в скоростных сетях она заменяется сквозной коммутацией.

5.3 Интегральная коммутация

Дальнейшее развитие методов коммутации привело к созданию интегральной коммутации. Это универсальный пакетно-ориентированный метод коммутации.

В этой технологии коммутация пакетов, коммутация каналов, ретрансляция кадров иретрансляция ячеек слились в единый способ передачи блоков данных. Связанные с этим операции осуществляются аппаратно и через каждый узел интегральной коммутации одновременно может проходить не один, а группа блоков данных. Благодаря этому выполняется методология скоростной коммутации данных, реализующая сквозную коммутацию быстрых пакетов, что позволяет эффективно загружать широкополосные каналы и скоростные базовые сети. Наиболее перспективной базой для интегральной коммутации является асинхронный способ передачи.

Высокая надежность современных коммуникационных сетей позволяет отказаться от проверки блоков данных во всех промежуточных узлах. Она может происходить только в конечных узлах либо уже в абонентских системах. По существу, коммутация на сетевом уровне заменяется ретрансляцией кадров либо ретрансляцией ячеек, выполняемыми на канальном уровне.

.4 Ретрансляция кадров

Ретрансляция кадров (frame relay) - технология аппаратной скоростной коммутации данных.

Передача больших потоков информации через коммуникационную сеть потребовала резкого увеличения скоростей передачи данных. В результате появились сети ретрансляции кадров.

Технология ретрансляции заключается в сквозной коммутации быстрых пакетов, обеспечивающей аппаратную самомаршрутизацию (распределение в каждом узле интегральной коммутации проходящих кадров по адресам их назначения). Кадры, в которых появились ошибки, уничтожаются. При этом в промежуточных узлах коммутации ради получения высоких скоростей, не осуществляется контроль достоверности и целостности данных. Он возлагается на оконечные узлы коммутации. Последние создают на канальном уровне соединения, осуществляют управление потоками данных через виртуальные каналы, выявляют и исправляют ошибки. Ретрансляция используется в коммуникационных сетях, работающих с малым числом ошибок.

В узлах интегральной коммутации над канальным уровнем и физическим уровнем располагаются канальные процессы, связывающие каналы передачи данных. При возникающих ошибках и перегрузках узлы выбрасывают мешающие им кадры. Сетевого здесь нет. В сети передаются кадры переменной длины размером до 1024 байт. Скорость передачи до 1,5 Мбит/с.

Ретрансляция кадров отличается от коммутации пакетов тем, что в рассматриваемом случае в коммуникационной сети отсутствуют пакеты. Фрагменты данных, передаваемые прикладным процессом, помещаются непосредственно в кадры, которые передаются не только между смежными системами, но и ретранслируются через всю коммуникационную сеть.

.5 Ретрансляция ячеек

Ретрансляция ячеек (cell relay) - сетевая технология, обеспечивающая аппаратную скоростную коммутацию данных, упакованных в ячейки.

Ретрансляция ячеек выполняет сквозную коммутацию и используется, в первую очередь, в базовых сетях. Она отличается от ретрансляции тем, что обеспечивает передачу через эти сети блоков данных постоянной длины, именуемых ячейками. Это происходит в режиме реального времени. Ретрансляция ячеек выполняется узлами интегральной коммутации.

Примерами реализации интегральной коммутации являются баньяновая сеть и матричный коммутатор.

.6 Баньяновая сеть

Баньяновая сеть - скоростная распределительная сеть, с каскадной адресацией.

Технология скоростной коммутации данных требует максимального использования параллелизма при ретрансляции кадров и ретрансляции. Важной базой этой технологии являются баньяновые (banyan-управляющий) сети. Структура баньяновой сети, выполненная в виде узла на 16 входов и выходов состоит из простых коммутирующих элементов, соединенных друг с другом.

Через последовательности этих элементов передаются блоки данных. Изображенная структура имеет четыре каскада (1-4) коммутирующих элементов. Каждый передаваемый блок данных имеет в заголовке адрес, разрядность которого равна числу элементов баньяновой сети. Блок, поданный на вход i-того каскада попадает, на один из его выходов, если в i-том разряде адреса записан "0". Если в этом разряде находится "1", то блок передается на другой выход элемента. Так, по каскадам, происходит ретрансляция блоков данных, определяемая деревом выбора путей передачи.

Таким образом, осуществляется самомаршрутизация блоков, определяемая их адресами. В результате, баньяновые сети обеспечивают большую пропускную способность, ибо блоки данных через них проходят параллельно, а функции маршрутизации выполняются аппаратно. Однако нужно иметь в виду, что в баньяновых сетях могут происходить взаимные блокировки и возникать тупиковые. Поэтому в рассматриваемых сетях должны быть приняты специальные меры, предотвращающие появление этих тупиков. Баньяновые сети используются в узлах интегральной коммутации.

5.7 Матричный коммутатор

Матричный коммутатор состоит из множества одинаковых коммутирующих элементов (рис.092)

В узлах сетки имеются коммутирующие элементы, причем в каждом столбце сетки может быть открыто не более чем по одному элементу. Если N≤М, то коммутатор может обеспечить соединение каждого входа с не менее чем одним выходом; в противном случае коммутатор называется блокирующим, т.е. не обеспечивающим соединения любого входа с одним из выходов. Обычно применяются коммутаторы с равным числом входов и выходов N*N.

Недостаток рассмотренной схемы - большое число коммутирующих элементов в квадратной матрице, равное N2. Для устранения этого недостатка применяют многоступенные коммутаторы. [4]

Заключение

Распределение потоков сообщений с целью доставки каждого сообщения по адресу осуществляется на узлах коммутации с помощью коммутационных устройств. Система распределений потоков сообщений в узлах коммутации получила название системы коммутации. Под коммутацией в сетях передачи информации условимся понимать совокупность операций, обеспечивающих в узлах коммутации передачу информации между входными и выходными устройствами в соответствии с указанным адресом.

В общем случае, решение каждой из частных задач коммутации - это определение потоков и соответствующих маршрутов, фиксация маршрутов в конфигурационных параметрах и таблицах сетевых устройств, распознавание потоков и передача данных между интерфейсами одного устройства, мультиплексирование/демультиплексирование потоков и разделение среды передачи - тесно связано с решением всех остальных. Комплекс технических решений обобщенной задачи коммутации в совокупности составляет базис любой сетевой технологии. От того, какой механизм прокладки маршрутов, продвижения данных и совместного использования каналов связи заложен в той или иной сетевой технологии, зависят ее фундаментальные свойства.

В вычислительных сетях коммутация пакетов - основной способ передачи данных. Это обусловлено тем, что коммутация пакетов приводит к малым задержкам при передаче данных через СПД, а также следующими обстоятельствами:

·              Во-первых, способ коммутации каналов требует, чтобы все соединительные линии, из которых формируется канал, имели одинаковую пропускную способность, что крайне ужесточает требования к структуре СПД. Коммутация сообщений и пакетов позволяет передавать данные по каналам связи, с любой пропускной способностью.

·              Во-вторых, представление данных пакетами создает наилучшие условия для мультиплексирования потоков данных - разделения времени работы канала для одновременной передачи нескольких потоков данных. Экономичность коммутации пакетов несколько снижается из-за размножения заголовков, сопровождающих каждый пакет, но эти потери окупаются за счет эффекта мультиплексирования сильно пульсирующих потоков данных, характерных для вычислительных сетей.

·              В-третьих, малая длина пакетов позволяет выделять для промежуточного хранения передаваемых данных меньшую емкость памяти, чем требуется для сообщений. Кроме того, использование пакетов упрощает задачу управления потоками данных.

Т. о. метод коммутации пакетов объединяет наиболее востребованные свойства методов КК и КС, что и объясняет его широкое использование в сетях ЭВМ.Выбор длины пакетов производится исходя из размера сообщений с учетом влияния длины пакетов на время доставки данных, пропускную способность линий связи, емкость памяти и загрузку ЭВМ.

Список литературы

1.http://www.newreferat.com/ref-3461-1.html

.http://wiki.mvtom.ru/index.php/Методы_коммутации

.Алиев Т.И. / учебное пособие/ сети ЭВМ и телекоммуникации/ СП. 2011

.http://bourabai.kz/telecom/nets14.htm

1. 

Похожие работы на - Методы коммутации информации данных в сетях ЭВМ

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!