Значение Fe2+ и Fe3+ в организме

  • Вид работы:
    Реферат
  • Предмет:
    Медицина, физкультура, здравоохранение
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    19,36 Кб
  • Опубликовано:
    2014-01-31
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Значение Fe2+ и Fe3+ в организме

СОДЕРЖАНИЕ

1. Введение.

. Характеристика элемента. Его физические и химические свойства.

. Биологические свойства.

. Железо в составе гемоглобина человека.

. Железо в составе миоглобина человека.

. Депонированное железо.

. Внеклеточное железо.

. Заключение.

. Используемая литература.

Введение

Железо является незаменимым металлом, необходимым для жизнедеятельности организма. Оно входит в состав гемоглобина, миоглобина, а также различных ферментов; обратимо связывает кислород и участвует в ряде окислительно-восстановительных реакций; играет важнейшую роль в процессах кроветворения. Потребность в этом элементе возрастает в период роста ребенка, при беременности, потере крови во время менструаций, а также при ряде заболеваний, сопровождающихся малокровием. Дефицит железа в организме может возникать при низком его поступлении с пищей (недостаточном питании, при диете с недостаточным содержанием в ней мясных блюд и др.), при ряде патологических состояний (ахлоргидрия, хронический понос, нарушающий всасывание биологически активных веществ из кишечника, после гастроэктомии, кровопотери, в том числе желудочно-кишечные кровотечения, связанные прежде всего с язвенной болезнью и раком, послеоперационные кровотечения, паразитарные инфекции и др.).

Недостаточное содержание железа в организме - это, прежде всего низкий гемоглобин, который отвечает за доставку кислорода к органам и тканям. Длительное железное голодание влечет за собой быструю утомляемость, снижение иммунитета, задержку умственного и физического развития у детей. Недостаток железа в организме приводит к развитию железодефицитной анемии, сопровождающейся нарушением физического развития, общей слабостью, снижением работоспособности и другими симптомами. Малокровие же приводит к сбою работы многих органов, в том числе и половых (у мужчин при дефиците железа развивается импотенция). От недостатка железа особенно страдают женщины в период беременности, а это нередко приводит к рождению неполноценного как в физическом, так и умственном отношении потомства. Как видим, недуги организма, и прежде всего детского, при дефиците железа напоминают во многом болезни при йодной недостаточности.

Железо, содержащееся в плазме, является транспортной формой этого элемента, в связи с чем содержание его в этой жидкости подвержено суточным колебаниям - оно обычно снижается во второй половине дня. За это время железо поступая в различные органы и ткани, и прежде всего в гемоглобин, удовлетворяет их потребности в этом металле. Обмен железа в организме во многом зависит от нормального функционирования печени, поэтому определение его в сыворотке крови может быть использовано в качестве диагностического теста.

Железо, как уже говорилось поступает в организм с пищевыми продуктами. И поступает оно, разумеется, в первую очередь в желудок, а далее - в кишечник, откуда оно и всасывается в кровь, разносясь по всему организму, удовлетворяя потребности органов и тканей, особенно нуждающихся в этом элементе. Для хорошего всасывания железа необходимо наличие в желудке достаточного количества свободной соляной кислоты, которая растворяет металл до усвояемой организмом формы.

Вот почему препараты железа при секреторной недостаточности желудка назначают вместе с желудочным соком или разведенной соляной кислотой. Лучше всасываются и усваиваются организмом препараты двуосновного (закисного) железа, хуже - трехосновного (окисного). С этой целью больным назначают восстановители, в первую очередь аскорбиновую кислоту, которая способствует переходу трехосновного железа в двухосновное. Далее в процесс включаются белковые молекулы слизистых оболочек желудка и кишечника, образующие с железом комплексы, способствующие оптимальному всасыванию железа в просвет кровеносного русла.[1]

Характеристика элемента. Его физические и химические свойства

Желе́зо - элемент <#"704699.files/image001.gif">дезоксимиоглобин + О2 для миоглобина из разных организмов <http://www.xumuk.ru/biospravochnik/692.html> изменяется в пределах от 0,2.106 до 2,2.106 М-1 (давление <http://www.xumuk.ru/encyklopedia/1165.html> О2, соответствующее полунасыщению, от 2,7 до 0,5 мм рт. ст.). Метмиоглобин обладает также слабыми пероксидазной и каталазной активностями <http://www.xumuk.ru/encyklopedia/101.html>.

В больших количествах миоглобин содержится в мышцах морских млекопитающих-дельфинов и тюленей (соотв. 3,5 и 7,7% от массы тела).

Миоглобин кашалота был первым белком <http://www.xumuk.ru/encyklopedia/486.html>, для которого Дж. Кендрю с сотрудниками в 1957-60 определили пространственную структуру молекулы <http://www.xumuk.ru/encyklopedia/2650.html> методом рентгеноструктурного анализа.[5]


Кроме того, в организме существует депонированное (запасное) железо. железо клетки находится главным образом в митохондриях.

Наиболее изученными и важными для организма ферментами являются цитохромы, каталаза и пероксидаза. Цитохромы представляют собой липидные комплексы гемопротеинов и прочно связаны с мембраной митохондрии. Однако, цитохромы в5 и Р450 находятся в эндоплазматическом ретикулюме, а микросомы содержат НАДН- цитохром С - редуктазу. Существует мнение, что митохондриальное дыхание необходимо для процессов дифференцировки тканей, а внемитохондриальное играет важную роль в процессах роста и дыхания клетки. Основной биологической ролью большинства цитохромов является участие в переносе электронов, лежащих в основе процессов терминального окисления в тканях. Цитохромоксидаза является конечным ферментом митохондриального транспорта электронов -электронотранспортнойцепочки, ответственным за образование АТФ при окислительном фосфолировании в митохондриях. Показана тесная зависимость между содержанием этого фермента в тканях и утилизацией имикислорода. Каталаза, как и цитохромоксидаза, состоит из единственной полипептидной цепочки, соединенной с гем-группой. Она является одним из важнейших ферментов, предохраняющих эритроциты от окислительного гемолиза. Каталаза выполняет двойную функцию в зависимости от концентрации перекиси водорода в клетке. При высокой концентрации перекиси водорода фермент катализирует реакцию ее разложения, а при низкой - и в присутствии донора водорода (метанол, этанол и др.) становится преобладающей пероксидазная активность каталазы. Пероксидаза содержится преимущественно в лейкоцитах и слизистой тонкого кишечника у человека. Она также обладает защитной ролью, предохраняя клетки от их разрушения перекисными соединениями. Миелопероксидаза- железосодержащий геминовый фермент, находящийся в азурофильных гранулах нейтрофильных лейкоцитов и освобождается в фагоцитирующие вакуолив течение лизиса гранул. Активированное этим ферментом разрушение белка клеточной стенки бактерий является смертельным для микроорганизма, а активированное им йодинирование частиц относится к бактерицидной функции лейкоцитов. К железосодержащим относятся и флавопротеиновые ферменты, в которых железо не включено в геминовую группу и необходимо только для реакций переноса. Наиболее изученной является сукцинатдегидрогеназа, которая наиболее активна в цикле трикарбоновых кислот. Митохондриальныемембраны свободно проницаемы для субстрата фермента.Негеминовое железо, локализующееся главнымобразом в митохондриях клетки, играет существенную роль в дыханииклетки, участвуя в окислительном фосфолировании и транспортеэлектронов при терминальном окислении, в цикле трикарбоновых кислот. Ферритин и гемосидерин - запасные соединения железа в клетке, находящиеся главным образом в ретикулоэндотелиальной системе печени, селезенки и костного мозга. Приблизительно одна треть резервного железа организма человека, преимущественно в виде ферритина, падает на долю печени. Запасы железа могут быть при необходимости мобилизованы для нужд организма и предохраняют его от токсичного действия свободно циркулирующего железа. Известно, что гепатоциты и купферовские клетки печени участвуют в создании резервного железа, причем в нормальной печени большая часть пегом и нового железа обнаружена в гепатоцитах в виде ферритина. При парентеральном введении железа как гепатоциты, так и кунферовские клетки печени аккумулируют большое количество дополнительного ферритина, хотя последние имеют тенденцию запасать относительно больше излишнего негеминового железа в виде гемосидерина. Ядро ферритина состоит из мицелл железо-фосфатного комплекса, имеющих кристаллическую структуру. Захват и освобождение железа осуществляется через белковые каналы путем свободного пассажа, а его отложение и мобилизация происходят на поверхности микрокристаллов. Стимуляция синтеза ферритина железом является хорошо установленным фактом. Как известно, печень является основным компонентом ретикулоэндотелиальной системы. В конце жизнедеятельности эритроциты фагоцитируются макрофагами этой системы, а освобождающееся железо или оседает в печени в виде ферритина (гемосидерина), или возвращается в плазму крови и захватывается в паренхиматозных клетках печени и мышц, а также в макрофагах ретикулоэндотелиальной системы печени, селезенки и костного мозга. Гемосидерин является вторым запасным соединением железа в клетке и содержит значительно больше железа, чем ферритин. В отличие от ферритина он нерастворим в воде. Существует достаточно аргументированное предположение, что преобразование ферритина в гемосидерин происходит путем постепенного перенасыщения ферритиновой молекулы железом с последующим ее разрушением и образованием зрелого гемосидерина. Внимание исследователей в последнее время привлекает циркулирующий в крови ферритин. Вероятно, он происходит из клеток ретикулоэндотелиальной системы. Имеются предположения, что сывороточный ферритин является отражением активной секреции ферритина из печеночных клеток, возможно из связанных полисом. Таким образом, его присутствие в сыворотке в небольшом количестве не является результатом разрушения клеток печени. Не только его происхождение, но и биологическая роль в организме человека до настоящего времени изучены недостаточно. Не вызывает сомнений точно установленный факт концентрация сывороточного ферритина отражает состояние запасного фонда железа в организме человека. Отметим, что хорошая зависимость отмечена между уровнем сывороточного ферритина и мобилизуемыми запасами железа в организме человека, изученных с помощью количественных кровопусканий, а также между ферритином и концентрацией негеминового железа в тканях печени, полученных с помощью биопсии у людей. Средняя концентрация его в сыворотке крови у мужчин выше, чем у женщин, с колебаниями от 12 до 300 мкг/л.[6]

железо эритроцит кровь плазма

Внеклеточное железо

Во внеклеточных жидкостях железо находится в связанном состоянии - в виде железо - белковых комплексов. Концентрация его в плазме широко варьирует у здорового человека, составляет 10,8 - 28,8 мкмоль/л. с достаточно большими суточными колебаниями, достигающими 7,2 мкмоль/л. Общее содержание железа во всем объеме циркулирующей плазмы у взрослого человека составляет 3 - 4 мг. Уровень железа в плазме крови зависит от ряда факторов: взаимоотношения процессов разрушения и образования эритроцитов, состояния запасного фонда железа в желудочно-кишечном тракте. Однако наиболее важной причиной, определяющей уровень плазменного железа, является взаимодействие процессов синтеза и распада эритроцитов. Железо-связывающий белок трансферрин, открытый шведскими учеными, содержится в небольшом количестве в плазме крови. Синтезируется трансферрин преимущественно в паренхиматозных клетках печени. Функции трансферрина в организме представляют значительный интерес. Он не только переносит железо в различные ткани и органы, но и «узнает» синтезирующие гемоглобин ретикулоциты и, возможно другие нуждающиеся в железе клетки. Трансферрин отдает железо им только в том случае, если клетки имеют специфические рецепторы, связывающие железо. Таким образом, этот железо-связывающий белок функционирует как транспортное средство для железа, обмен которого в организме человека зависит как от общего поступления железа в плазму крови, так и от его количества, захваченного различными тканями соответственно количеству в них специфических рецепторов для железа. Кроме того трансферрин обладает защитной функцией - предохраняет ткани организма от токсического действия железа. Анализируя биологическую роль трансферрина в организме, следует упомянуть о результатах экспериментальных исследований, свидетельствующих о способности этого белка регулировать транспорт железа из лабильных его запасов в эпителии клеток желудочно-кишечного тракта в плазму крови. Из плазмы железо захватывается преимущественно костным мозгом для синтеза гемоглобина и эритроцитов, в меньшей степени - клетками ретикулоэндотелиальной системы и откладывается в виде запасного железа, некоторое количество его поступает в неэритропоэтические ткани и используется для образования миоглобина и ферментов тканевого дыхания (цитохромы, каталаза и т.д.). Все эти процессы являются сложными и до конца не изученными. Железо-связывающий белок лактоферрин обнаружен во многих биологических жидкостях: молоке, слезах, желчи, синовиальной жидкости, панкреатическом соке и секрете тонкого кишечника. Кроме того, он находится в специфических вторичных гранулах нейтрофильных лейкоцитов, образуясь в клетках миелоидного ряда со стадии промиелоцита. Подобно трансферрину, лактоферрин способен связывать 2 атома железа специфическими пространствами. Он состоит из одной полипептидной цепочки, молекулярный вес приблизительно равен 80000. В физиологических условиях этот железо-связывающий белок насыщен железом до 20%в ничтожных количествах он содержится в плазме крови, освобождаясь в нее из нейтрофильных лейкоцитов. Несмотря на схожесть лактоферрина и трансферрина, эти железо-связывающие белки отличаются друг от друга по антигенным свойствам, составу аминокислот, белков и углеводов. В настоящее время известны следующие функции этого белка: бактериостатическая, участие в иммунных процессах и абсорбции железа в желудочно-кишечном тракте. Свободный от железа лактоферрин - аполактоферрин обладает бактериостатическими свойствами, которые теряются при насыщении его железом. Аполактоферрин тормозит invitro рост бактерий и грибов, и возможно, играет роль во внутриклеточной гибели микроорганизмов. При низкой концентрации лактоферрина в нейтрофильных лейкоцитах может уменьшаться их бактерицидная активность. Железосерные ферменты - это еще один важный класс железосодержащих ферментов, участвующих в переносе электронов в клетках животных, растений и бактерий. Железосерные ферменты не содержат гемогрупп, они характеризуются тем, что в их молекулах присутствует равное число атомов железа и серы, которые находятся в особой лабильной форме, расщепляющейся под действием кислот. К железо-серным ферментам относится, например, ферредоксин хлоропластов, осуществляющий перенос электронов от возбужденного светом хлорофилла на разнообразные акцепторы электронов.[7]

Заключение

Итак, являясь структурным компонентом гема, гемовое железо необходимо для синтеза ключевого белка эритроцитов - гемоглобина, осуществляющего транспорт кислорода, углекислоты и протонов. Последнее предопределяет участие гемоглобина в поддержании буферной емкости крови. Гем является структурным компонентом ферментов детоксикации - цитохрома Р-450 и антиоксидантной защиты - каталазы и миелопероксидазы. Входит в структуру митохондриальных цитохромов, участвующих в утилизации кислорода и синтезе АТФ. Является обязательным и незаменимым компонентом различных белков. Негемовое железо входит в состав трансферрина (транспорт железа), ферритина и гемосидерина (депонирование железа), дегидрогеназы, а также белков цикла Кребса. За счет синтеза клеток белой крови поддерживает высокий уровень иммунной резистентности организма (обеспечивает защиту организма от инфекции). Принимает участие в работе мышц: гемовое железо входит в состав миоглобина, поэтому участвует в транспорте кислорода и депонировании железа в мышечной ткани.

Таким образом, мы убедились в том, что железо является незаменимым металлом, необходимым для жизнедеятельности организма.

Литература

1.       В. Д. Казьмин.

2.       <http://chem100.ru/>.

3.       www.calorizator.ru <http://www.calorizator.ru>.

4.       Г. В. Андреенко, С. Е. Северин.

.        <http://www.xumuk.ru/>.

.        Ленинджер А. «Основы биохимии»,М., 1985.

.        Петров В.Н. «Физиология и патология обмена железа »,Л., 1982.Кассирский И.А. «Клиническая гематология », М., 1970.

Похожие работы на - Значение Fe2+ и Fe3+ в организме

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!