Голография: основные принципы и применение

  • Вид работы:
    Реферат
  • Предмет:
    Физика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    112,85 Кб
  • Опубликовано:
    2013-06-11
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Голография: основные принципы и применение














Реферат

Голография: основные принципы и применение

Введение

Принципы голографии впервые были изложены английским ученым Деннисом Габором в 1948 году. В то время важность этого открытия еще не была вполне очевидной, и лишь очень немногие исследователи, работавшие в 50-е годы в данной области, страдали от отсутствия подходящего источника света, который обладал бы весьма важным свойством - когерентностью. В 1960 году был изготовлен первый лазер. Этот прибор создает свет достаточной когерентности, и американские ученые Иммет Лейт и Юрис Упатниекс из Мичиганского Технологического Института смогли использовать его для получения первых голограмм, создававших изображения предметов во всех трех измерениях. Исследования продолжались в последующие годы, и с тех пор на тему голографии были опубликованы сотни научных статей и издано много книг.

Голографию проще всего охарактеризовать как объемную фотографию с использованием лазера. Это не вполне удовлетворительное определение, ибо существует немало других видов трехмерной фотографии, однако в нем отражены многие существенные моменты: голография - это технический метод, позволяющий производить «запись» внешнего вида объекта; она создает трехмерное изображение, которое выглядит столь же материальным, как и реальный предмет; использование лазеров имело решающее значение для ее развития.

Изучение голографии вносит ясность во многие вопросы, касающиеся обычной фотографии. Голография, как изобразительное средство, способна даже бросить вызов фотографии, так как она позволяет более правильно и точно отражать окружающий нас мир. Иногда историки считают целесообразным делить историю человечества на эпохи по типам средств связи, известным в те или иные века. С этой точки зрения можно говорить, например, об иероглифах Древноего Египта или изобретении печатного станка. В последнее время в связи с техническим прогрессом господствующее положение заняли новые средства связи: телефон и телевидение. Кое-кто отрицает, что в целом их роль в развитии общества весьма благотворна, но лишь немногие пытаются серьезно проанализировать, каково же все-таки действительное влияние телефона и телевидения на жизнь в современном мире. Хотя голография как средство информации пока еще пребывает в младенческом состоянии, есть основания ожидать, что в будущем она в значительной степени заменит существующие средства связи или по крайней мере расширит сферу их действия. Тем не менее в наши дни мало кто представляет, что такое голография и где она может найти применение.

Массовая печать и научно-фантастическая литература часто преподносят голографию в довольно искаженном, неверном свете. Нередко они создают в общем неправильное представление об этом методе. Увиденная впервые голограмма завораживает, но физическое объяснение того, как она работает, производит не меньшее впечатление. Только после этого начинаешь понимать как потенциальные возможности, так и пределы применимости голографии - не только сегодня, но и в будущем.

1.     
Суть явления голографии

Согласно принципу Гюйгенса - Френеля, можно восстановить картину волнового поля, образованного электромагнитной волной, в любой момент времени и в любой точке пространства. Для этого надо записать распределение амплитуд и фаз волн на произвольной поверхности или ее части, охватывающей источник волн. Иными словами, чтобы «заморозить» электромагнитные волны во всем пространстве, достаточно «заморозить» их только на некоторой поверхности.

Как восстановить в пространстве световую волну, т.е. «разморозить» ее? Для этого надо задать параметры, характеризующие среду. Предположим, нужно восстановить плоскую волну. Для этого мы должны задать для любой плоскости равномерно распределенные источники колебаний с определенной начальной фазой. Элементарные источники колебаний должны находиться на поверхности, перпендикулярной направлению распространения волн. Но это те обязательно. Все будет зависеть от типа волн. Возьмем для примера сферические волны, излучаемые точечным источником. Зададим в качестве поверхности, на которой «замораживаются» волны, сферу с центром в источнике. Амплитуды и фазы элементарных источников волн будут одинаковыми для всей поверхности. В случае с круговыми волнами при «замораживании» световых волн надо расположить элементарные источники колебаний с одинаковой фазой и амплитудой на концентрических окружностях.

Иными словами, мы должны зарегистрировать на некоторой поверхности мгновенные картины линий постоянной фазы в виде чередующихся прозрачных и непрозрачных областей. В этом нам помогает интерференция: мы получаем интерференционную картину, состоящую из светлых и темных полос. Интерференция и есть способ сравнения пространственной структуры двух пучков света. Вначале происходит их сравнение, а затем - регистрация их на фотопластинку.

Откуда возникли оба эти пучка и что они собой представляли в опытах Габора? Один пучок отражался от освещенного предмета и падал на фотопластинку. Он являл собой определенную комбинацию волн, конфигурация которых зависела от формы предмета. Она могла быть как очень простой, так и очень сложной. Другой пучок имел простую конфигурацию. Чаще всего он состоял из плоских волн. Создавался он когерентным источником света и назывался опорной волной. Второй пучок служил в качестве эталона. Он также падал на фотопластинку.

Оба световых пучка пересекались вблизи этой пластинки. При пересечении они интерферировали между собой, образуя области усиления или ослабления, чередующиеся по определенному закону во времени и пространстве. В результате интерференции получалась интерферограмма в виде чередующихся светлых и темных полос - неподвижная интерференционная картина.

Неподвижность интерференционной картины в пространстве обеспечивалась опорной волной. Это она «останавливала» световую волну.

Чтобы восстановить изображение предмета, достаточно осветить голограмму только опорным пучком, используемым при записи. Этот способ регистрации волнового поля ценен тем, что допускает простое восстановление исходной волны. Как только мы направляем на голограмму опорную волну, использованную при записи, за голограммой восстанавливается исходное волновое поле предмета. Согласно принципу Гюйгенса - Френеля, восстановлением мы обязаны эквивалентным источникам, образованным светлыми местами интерференционной картины. По этой причине волны «размораживаются», и наблюдатель видит пространственное изображение предмета.

Итак, можно сделать вывод о том, что голография - это фотографический метод. Но он существенно отличается от метода классической фотографии. Это радикально иной, двухступенчатый метод. В отличие от обычной фотографии изображения, которые получаются при восстановлении записанного на голограмме, полностью неотличимы от изображений реального предмета. Голография позволяет воспроизвести в пространстве действительную картину электромагнитных волн, т.е. волновую картину предмета тогда, когда самого предмета уже нет.

Голографирование. Восстановление изображения предмета

Уширенный с помощью системы линз пучок лазера (рис. 1) одновременно направляется на исследуемый объект и на зеркало. Отраженная от зеркала опорная волна и рассеянная объектом световая волна падают на обычную фотопластинку, где происходит регистрация возникшей сложной интерференционной картины. После соответствующей экспозиции фотопластинку проявляют, в результате чего получается так называемая голограмма - зарегистрированная на фотопластинке интерференционная картина, полученная при наложении опорной и предметной волн. Голограмма внешне похожа на равномерно засвеченную пластинку, если не обращать внимания на отдельные кольца и пятна, возникшие вследствие дифракции света на пылинках и не имеющие отношения к информации об объекте.

Для восстановления волнового поля предмета, тем самым для получения его объемного изображения, голограмму помещают в то место, где была расположена фотопластинка при фотографировании, и затем освещают голограмму световым пучком того же лазера под тем же углом, под которым было осуществлено экспонирование. При этом происходит дифракция опорной волны на голограмме и мы видим объемное со всеми присущими самому объекту свойствами «мнимое» изображение. Оно кажется нам настолько реальным, что даже иной раз появляется желание потрогать предмет. Разумеется, это невозможно, так как в данном случае изображение образовано голографической копией волны, рассеянной предметом во время записи голограммы.

От голограммы в глаз попадает точно такая же волна, какая попала бы от самого предмета. Кроме мнимого изображения получается также действительное изображение объекта, имеющее рельеф, противоположный рельефу самого объекта, (рис. 1, а), если наблюдение ведется справа от голограммы, как показано на рис. 1, б. В этом случае трудно наблюдать действительное изображение невооруженным глазом. Если осветить голограмму с обратной стороны обращенным опорным пучком так, чтобы все лучи пучка были направлены противоположно лучам первоначального опорного пучка, то в месте первоначального расположения предмета возникает действительное изображение, доступное наблюдению невооруженным глазом. Его можно зарегистрировать на фотопластинку без применения линз.

Рис. 1

2.      Свойства источников

голография поляризация когерентность

Названия голограмм, которые будут рассмотрены ниже, употребляются только в том случае, если голограмма чем-то отличается от стандартной. Если говорят, что кто-то собирается записать голограмму, то это, по всей вероятности, означает, что планируется использовать лазер, поместить фотопластинку в френелевскую область объекта, расположить внеосевой точечный опорный источник по крайней мере на таком же расстоянии от плоскости регистрации, на котором от нее находится объект, применять плоскую фотоэмульсию и регистрировать поверхностную голограмму.

Когерентность

Мы должны различать свойства опорной волны и волны, освещающей объект, с одной стороны, и свойства восстанавливающей волны - с другой. Термин некогерентная голограмма обычно сохраняется за голограммами, записанными при использовании некогерентного света. При записи некогерентной голограммы интерференционные полосы образуются благодаря интерференции света от какой-либо точки изображения с самим собой. Для этого формируют два изображения объекта с помощью делительного устройства. Свет от соответствующих точек изображения является когерентным и может интерферировать. Свет, который не интерферирует, образует фоновое освещение голограммы. Другой способ получения интерференционных полос, когда источник света имеет низкую когерентность, заключается в формировании на голограмме изображения решетки и помещении объекта в один из порядков этой решетки.

Существует много различных ситуаций, когда голограмма регистрируется в когерентном свете, а изображение с нее восстанавливается некогерентным светом. Название голограммы определяют характеристиками голограммы, не связанными с когерентностью. Например, голограмма, записанная в когерентном свете, но при восстановлении освещаемая белым светом, называется отражательной голограммой, восстанавливаемой в белом свете.

Возможно, что голограмма восстанавливает ту часть света, которая имеет длину волны используемого при регистрации голограммы излучения, поскольку толстая голограмма действует как комбинационный интерференционный фильтр. Может применяться и тонкая голограмма, если для компенсации дисперсии света применяется решетка. Такие голограммы были названы поверхностными отражательными голограммами. При освещении белым светом вполне удовлетворительное изображение дают голограммы сфокусированного изображения и радужные голограммы.

Поляризация

Во многих случаях свет источника является поляризованным, в особенности если источником служит лазер. Это означает, что мы имеем дело с поляризованной опорной волной. Объектная волна во многих случаях, таких, как отражение света от объекта при формировании объектной волны, оказывается поляризованной случайным образом. Поскольку интерференция может произойти только между волнами, имеющими одинаковую поляризацию, часть объектной волны не регистрируется. Обычно о поляризационных свойствах записи голограмм не упоминают. Применение этого свойства для проверки некоторых характеристик объекта путем выбора направления поляризации опорной волны называется поляризационной голографией.

Длина волны света

Применяя свет нескольких длин волн, можно записать цветную голограмму. Разумеется, сама голограмма не является цветной, но при освещении ее светом со многими длинами волн, мы получаем цветное изображение. Другие названия голограмм, связанные с длиной волны, относятся к области спектра или типу применяемой волны; например, микроволновая голограмма, акустическая голограмма и рентгеновская голограмма.

3.     
Некоторые виды голограмм

 

Мультикомплексные голограммы

Мультикомплексной называют такую голограмму, на которой одновременно записано много изображений, либо раздельно записаны отдельные части одного изображения, либо единственное изображение записано несколько раз.

Пространственное мультиплексирование

При решении задачи хранения данных для записи многих голограмм можно использовать единственную фотопластинку или какой-либо иной материал, причем каждая голограмма может независимо восстанавливать изображения записанных на ней данных. При этом голограммы могут образовывать решетку типа шахматного поля, а для считывания изображения с каждой голограммы лазерный луч сканирует по решетке.

Встречается и другой способ пространственного разделения голограммы, когда одна и та же объектная волна или волна от одного и того же объекта, но с разных ракурсов записывается на голограмме в виде полос. В первом случае полосковая голограмма просто повторно записывается много раз, так чтобы можно было восстановить изображение со всей голограммы. Второй случай имеет место при записи синтезированных голограмм для целей отображения информации.

Составные изображения

Под составными голограммами мы имеем в виду голограммы, которые формируют изображения, состоящие из отдельных частей каждая из которых была записана самостоятельно

Голограммы, восстанавливаемые в белом свете

Голограмма представляет собой закодированную дифракционную решетку. Следовательно, когда голограмма освещается белым светом, волны с большими длинами волн отклоняются сильнее от оси освещающей голограмму волны, чем волны с более короткими длинами волн. В результате этого восстановленное изображение; смазывается. Такой эффект можно отчасти скомпенсировать, используя дифракционную решетку с шагом штриха, равным среднему периоду интерференционных полос на голограмме. Изложенные выше соображения применимы к тонким голограммам. Объемные голограммы обладают избирательностью по отношению к длине волны и будут отражать или пропускать только узкую полосу длин волн, обусловленную эффектом Брэгга.

4.      Применение голографии

Голографический метод записи волнового фронта находит широкое применение в различных областях науки и техники и имеет перспективы в будущем. Перечислим лишь некоторые из них. Голограмму можно использовать в качестве комплексного оптического элемента. Такой оптический элемент может выступать во многих качествах. Известны голограммы, играющие роль линз (голограмма - зонная решетка), разлагающие свет в спектр (голограммы - дифракционные решетки), интерференционные фильтры (слои Липпмана) и т.д. Голографические дифракционные решетки содержат свыше 5000 полос на 1 мм. Метод голографии позволяет записывать на заданном малом участке фотоэмульсии (особенно толстослойной) в 100 - 400 раз больше страниц печатного текста, чем методы обычной микрофотографии. На обычную фотопластинку размером 32-32 мм2 можно записать 1024 голограммы, каждая из которых занимает площадь в один квадратный миллиметр. Одна голограмма - страница книги, одна пластинка - целая большая книга.

Многообещающим является применение голографии при распознавании образов и символов, что позволит создать читающие автоматы, обладающие большой надежностью.

Метод голографической интерферометрии позволяет исследовать изменения (например, деформацию), происшедшие в наблюдаемом объекте под каким-либо внешним действием. В основе регистрации таких малых деформаций лежит явление интерференции двух волн, существовавших в разные моменты времени. Как можно осуществить интерференцию таких волн? Для этого на одну и ту же фотопластинку регистрируют две голограммы, полученные от одного и того же исследуемого объекта в разные моменты времени. Малейшее изменение формы объекта из-за деформации в промежутке между двумя регистрациями изменяет фазу предметной волны. Следовательно, если в промежуток времени между двумя экспозициями произошли какие-то деформации, то при просвечивании этих голограмм увидим изображение объекта, перерезанное интерференционными полосами, по форме которых можно судить о характере деформации. Точность измерения этого метода весьма высокая: он позволяет измерить деформации порядка десятой доли микрона. Возможности контроля размеров, формы и качества обработки сложных деталей с помощью голографии сделают этот метод наиболее ценным в производстве.

Ценность голографической интерферометрии заключается еще и в том, что она позволяет при любых относительных измерениях обойтись без эталона сравнения, например при деформации поверхности, перемещении из одного состояния в другое или при сжатии исходное и конечное состояния могут служить эталонами друг относительно друга.

Заключение

Согласованные усилия многих исследователей позволили накопить ряд сведений и фактов о свойствах трехмерных голограмм. За этими на первый взгляд разрозненными фактами достаточно отчетливо вырисовывается то единое явление природы, которое лежит в их основе. Оказывается, что материализованная объемная картина волн интенсивности способна воспроизводить волновое поле со всеми его параметрами - амплитудой, фазой, спектральным составом, состоянием поляризации и даже с изменениями этих параметров по времен.

Однако общая картина этого явления пока еще далека от завершения. И дело здесь не только в том, что в ряде случаев мы не знаем полностью набор отображающих свойств некоторых видов голограмм. Есть все основания считать, что будут открыты новые неожиданные оптические свойства голограмм. Вполне вероятно, Что ряд новых эффектов будет обнаружен при применении светочувствительных материалов, обладающих специфическими свойствами, подобно тому как применение резонансных и поляризационных сред открыло возможность записи временных и поляризационных характеристик волновых полей. И наконец, прецедент объединения голографии и нелинейной оптики в динамическую голографию показывает, что внесение идей голографии в смежные с ней области знаний может привести к появлению совершенно новых направлений.

Библиографический список

1. Голография и ее применение. Островский Ю.И.

2.      Оптическая голография т. 1. С.Б. Гуревич, Г. Колфилд

.        Оптическая голография т. 2. С.Б. Гуревич, Г. Колфилд

.        Курс общей физики т. 2. И.В. Савельев

Похожие работы на - Голография: основные принципы и применение

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!