Гигиена содержания животных

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Сельское хозяйство
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    62,01 Кб
  • Опубликовано:
    2013-11-20
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Гигиена содержания животных

ВВЕДЕНИЕ

Вода является драгоценным даром природы, живой кровью, которая создает жизнь там, где ее не было. Вода (оксид водорода) - химическое вещество в виде прозрачной жидкости, которая не имеет цвет, запах и вкус (при нормальных условиях).

Вода как и почва является естественной средой обитания для многих видов микроорганизмов, которые развиваются как в воде открытых водоемов, так и в грунтовых водах ; многие виды бактерий обитают в воде, особую опасность представляют патогенные бактерии, которые могут содержаться в ней.

В большинстве случаев микроорганизмы попадают в воду из почвы, некоторые - из воздуха с оседающей пылью, с отбросами, мочой и т.д.

Значительное количество микроорганизмов попадают с хозяйственно - бытовыми сточными водами, которые содержат миллионы и даже миллиарды бактерий 1 см3 . Качественный состав обитающих в воде микроорганизмов зависит в основном от самой воды, поступления в нее сточных и промышленных отходом.

К постоянном живущим в воде микроорганизмам относят Azotobacter , Nitrobacter , Micrococcus roseus , Pseudomonas fluorescens , Bact. Aquatalis и др. Кроме сапрофитов в воде могут быть возбудители инфекционных болезней животных и человека. В чистых водоемах до 80 % всей аэробные сапрофиты микрофлоры приходятся на кокковые формы , остальные 20% составляют палочковидные.

Из данных, опубликованных в свое время ЮНЕСКО, следует, что в настоящее время около 2 млрд человек не земном шаре не имеют возможности воспользоваться чистой, безопасной для жизни и здоровья водой. В тоже время установлено, что до 80% всех известных заболеваний человека передается (распространяется) через воду. [ 9 ]

1.   ПОВЕРХНОСТНЫЕ ВОДЫ

Поверхностные воды суши - воды, которые текут (водотоки) или собираются на поверхности земли (водоёмы) . Различаются морские, озерные, речные, болотные и другие воды. Поверхностные воды постоянно или временно находятся в поверхностных водных объектах. Объектами поверхностных вод являются: моря, озёра, реки, болота и другие водотоки и водоёмы. Различают солёные и пресные воды суш.

Образование поверхностных вод - сложный процесс.Потоки, низвергающиеся с неба в виде дождя или снега - это испарившаяся из морей и океанов вода. От характера местности, по которой она течет под действием силы тяжести (одновременно вода является сильнейшим разрушителем той части земной коры, находящейся выше уровня моря), зависит маршрут, по которому она, собираясь в ручьи и реки, устремляется снова к морю. Таким образом, завершается одна крупная фаза гидрологического цикла.

Стекая по поверхности, вода захватывает и переносит нерастворимые минеральные частицы песка и почвы, часть из них она оставляет по дороге, часть переносит к морю, а какие-то вещества растворяются в ней.

Поверхностные воды, проходя по неровной местности и падая со скал, насыщаются кислородом воздуха, его соединения с органическими и неорганическими веществами, вымытыми из суши конкретной местности и солнечный свет поддерживают большое разнообразие форм жизни в виде водорослей, грибов, бактерий, мелких ракообразных и рыб.

Кроме того, русла многих рек бывают покрыты деревьями, тех районов, по которым они протекают, если берега рек покрыты лесами. Опавшие листья и хвоя деревьев попадают в реки, они играют большую роль в наполнении воды биологическим содержанием. После попадания в воду они растворяются в ней. Именно этот материал в дальнейшем становится основной причиной загрязнения ионообменных смол, которые используют для очистки воды.

Физические и химические свойства загрязнений поверхностных вод постепенно меняются с течением времени. Внезапные природные катаклизмы могут привести к резкому изменению в короткий срок состава поверхностных источников воды. Химия поверхностных вод меняется также в зависимости от сезона, например, в периоды сильных дождей и таяния снега (период большого паводка, когда уровень в реках резко поднимается). Это может оказать благоприятное или неблагоприятное влияние на характеристики воды , в зависимости от геохимии и биологии местности.

Химия поверхностных вод также меняется в течение года в несколько циклов засухи и дождей. Длительные периоды засухи серьезно влияют на нехватку воды для промышленного использования. В местах, где реки впадают в моря, возможно попадание соленой воды в реку в период засухи, что создает дополнительные проблемы. Промышленные пользователи должны ориентироваться на изменчивость поверхностных вод, обязательно учитывать при проектировании очистных сооружений и разработке других программ.

Качество поверхностных вод зависит от сочетания климатических и геологических факторов. Основным климатическим фактором является количество и частота осадков, а также экологическая ситуация в регионе. Выпадающие осадки несут с собой определенное количество нерастворенных частиц, таких как пыль, вулканический пепел, пыльца растений, бактерии, грибковые споры, а иногда и более крупные микроорганизмы. Океан является источником разных солей, растворенных в дождевой воде. В ней можно обнаружить ионы хлорида, сульфата, натрия, магния, кальция и калия. Промышленные выбросы в атмосферу также "обогащают" химическую палитру, в основном за счет органических растворителей и оксидов азота и серы, являющихся причиной выпадения "кислотных дождей". Вносят свою лепту и химикаты, применяемые в сельском хозяйстве. К числу геологических факторов относится структура русла рек. Если русло образовано известняковыми породами, то вода в реке, как правило, прозрачная и жесткая. Если же русло из непроницаемых пород, например гранита, то вода будет мягкой, но мутной за счет большого количества взвешенных частиц органического и неорганического происхождения. В целом поверхностные воды характеризуются относительной мягкостью, высоким содержанием органики и наличием микроорганизмов.

К поверхностным водам относят водотоки, водоемы, болота и ледники. В водотоках естественных (реки, ручьи) и искусственных (каналы), происходит движение воды по руслу в направлении общего уклона поверхности. Водотоки могут быть постоянными или временными (пересыхающими или перемерзающими).

Водоем - это скопление вод в естественной (озеро) или искусственной (водохранилище, пруд) впадине, сток из которой отсутствует или замедлен. Лишь малая часть гидросферы содержится в реках, примерно в четыре раза меньше, чем в болотах, и в шестьдесят раз менее, чем в озерах.

Реки Значение рек в водном круговороте неизмеримо больше, чем воды в них содержится, поскольку вода в реках обновляется в среднем каждые 19 дней.

Для сравнения - в болотах полное обновление воды происходит за 5 лет, в озерах - за 17 лет.

Благодаря проточности воды реки лучше насыщаются кислородом и качество воды здесь лучше. Именно по берегам рек возникали и первые поселения людей.

Реки длительное время служили и основными транспортными артериями и оборонительными рубежами, были источниками воды и рыбы. Рекой обычно называют естественный постоянный водный поток, протекающий в разработанном им углублении (русле). Речные долины - вытянутые углубления на земной поверхности, выработанные постоянными водными потоками. Все речные долины имеют склоны и ровное дно. Водный поток постоянно несет множество продуктов размыва, которые откладывает в днище долины или выносит в море. Речные наносы называют аллювием. Особенно много аллювия накапливается в днищах долин в нижних течениях рек, где меньше всего уклоны поверхности. Во время таяния снега часть днища (пойма) заливается полыми водами. Речной поток всегда стремится углубить свое русло до определенного уровня. Этот уровень называется базисом эрозии. Для реки базисом эрозии служит уровень моря, озера или другой реки, куда эта река впадает. Река постоянно углубляет свое русло и наступает такое время, когда в половодье река уже не может больше затапливать свою пойму. Река начинает разрабатывать новую пойму на более низком уровне, а старая пойма превращается в террасу - высокую ступень в днище речной долины. Чем древнее и крупнее река, тем больше террас можно насчитать в ее долине.

В действительности река - это сложное природное образование (система), состоящее из множества элементов. Территория, с которой речная система собирает свои воды, называется речным бассейном. Между соседними речными бассейнами проходит граница - водораздел.

Самый большой бассейн имеет река Амазонка, она является и самой многоводной рекой (среднегодовой сток равен 220 000 куб. м/сек).

Густота речной сети зависит от многих факторов: в первую очередь, от общего увлажнения территории - чем оно больше, тем больше густота рек, как например, в тундре и лесных зонах; от рельефа и геологического строения территории - в районах распространения растворимых и трещиноватых (карстующихся) известняков речная сеть редкая, а реки, как правило, мелкие и пересыхающие.

Все реки имеют начало и конец. Начало реки, место, где появляется постоянное русло водотока, называется истоком. Истоком может быть озеро, болото, родник или ледник.

Устье - место впадения реки в море, озеро или одной реки в другую. У ряда крупных северных рек устья имеют вид узких воронкообразных заливов - они называются эстуариями. В эстуариях речные наносы под действием волн и течений выносятся в море. Крупные эстуарии имеют такие реки, как Конго в Африке, Темза и Сена в Европе, а также российские реки Енисей и Обь. В отличие от них, в дельтах, наоборот, реки буквально блуждают, впадая в море, среди собственных наносов, разбиваясь на многочисленные рукава и протоки. Крупнейшие дельты имеют реки - Амазонка, Хуанхэ, Лена, Миссисипи и др.

Рельеф местности впрямую влияет на уклон русла реки и, соответственно, на скорость течения воды. Разность отметок высот поверхности воды в реке в двух точках, расположенных на некотором расстоянии вдоль ее течения, называется падением реки. Уклон реки - отношение падения реки к ее длине. Падение воды с отвесного уступа называется водопадом.

Самый высокий водопад на Земле - Анхель (1054 м) в бассейне реки Ориноко. Самый широкий (1800 м) - Виктория на р. Замбези (его высота 120 м.). Равнинные реки обычно текут спокойно и плавно, с небольшим падением и малыми уклонами. У больших рек развиты широкие долины и они удобны для судоходства. Горные реки имеют большие уклоны и, поэтому, бурное течение, узкие порожистые глубокие долины. Вода в русле несется с бешеной скоростью, пенится, образует водовороты и водопады.

Горные реки обычно непригодны для судоходства, зато обладают большими запасами гидроэнергии и удобны для строительства ГЭС.

Для народного хозяйства (судоходства, строительства гидроэлектростанций, водоснабжения населенных пунктов, орошения полей) очень важными характеристиками рек являются расход воды (количество воды, проходящее по руслу за единицу времени) и годовой сток (расход воды в реке за год).

Величина годового стока характеризует водоносность реки и зависит, от климата (соотношения атмосферных осадков и испарения на площади речного бассейна) и рельефа (равнинный рельеф уменьшает сток, горный, наоборот, его увеличивает).

От скорости и устойчивости к размыву горных пород зависит величина переносимого водой материала, состоящего из растворенных в воде химических и биологических веществ и твердых мелких частиц - величина твердого стока. Климатические условия влияют на питание и режим рек (ледниковое, снеговое, дождевое и грунтовое). От преобладающего типа питания зависит внутригодовое распределение стока - режим рек. Режим рек - это жизнь речного потока в течение какого-то времени (суток, сезонов и года). По режиму реки подразделяются на несколько основных групп. На реках с весенним половодьем и преимущественно снеговым питанием. Относительно быстрое стаивание снежного покрова приводит к подъему и разливу воды (весеннее половодье). Летом реки переходят на дождевое питание и, хотя, осадков выпадает большое количество, из-за усиленного испарения эти реки мелеют. На реках отмечается межень - время устойчивого низкого уровня воды в русле. Зимой во время ледостава (замерзания и образования неподвижного льда) реки питаются исключительно грунтовыми водами и наблюдается зимняя межень. Поводковые режим характерен для рек с дождевым и смешанным питанием. Паводки - кратковременные (иногда очень значительные) подъемы воды в реке - в отличие от половодий могут возникать в любое время года и связаны чаще всего о обильными дождями. В теплые зимы паводки могут проявляться и в это время года.

Позднее таяние снега и ледников в горах вызывает летнее половодье. Таким режимом характеризуются, например, реки берущие начало в Альпийских горах. Реки муссонного климата, характеризуются паводковым режимом во второй половине лета и зимней меженью. Из-за маломощного снежного покрова весеннее половодье у них выражено слабо или совсем отсутствует. Муссоны нередко приносят обильные осадки, имеющие ливневой характер, что приводит к катастрофическим наводнениям. В это время под водой оказываются обширные территории с многочисленными селениями. Разрушаются здания, гибнут посевы, животные и, даже, люди. Особенно буйным нравом отличаются реки Восточной и Южной Азии: Амур, Хуанхэ, Янцзы, Ганг.

Озёра Озера различаются не только размерами и глубиной, но также цветом и свойствами воды, составом и численностью населяющих их организмов. На количество озер (озерность территории) влияет повышенная влажность климата и рельеф с многочисленными замкнутыми котловинами. Размеры, глубина, форма озер во многом зависят от происхождения их котловин. Различают котловины тектонического, ледникового, карстового, термокарстового, станичного и вулканического происхождения. Бывают еще запрудные (завальные или плотинные) озера, образующиеся в результате преграждения русла реки глыбами пород при обвалах в горах. Тектонические озерные котловины имеют большие размеры и глубину, так как они образовались на месте опусканий, трещин и разломов земной коры. Классическими тектоническим озерами являются крупнейшие озера мира: Каспийское и Байкал в Евразии, Великие Африканские и Североамериканские озера.

Ледниковые озерные котловины формируются при выпахивающей деятельности ледников или в результате размыва или скопления ледниковых вод в районах аккумуляции ледникового материала и образования ледниковых форм рельефа. Таких озер много в Финляндии, на севере Польши, в Карелии и д.р.

Карстовые озерные котловины образуются в результате провалов, просадок и размыва, в первую очередь, легко растворимых горных пород: известняков, доломитов гипсов, солей. Термокарстовых озер много в зоне вечной мерзлоты в тундре и лесотундре. Здесь вода растворяет подземные льды.

Старинные озера - это остатки брошенных речных русел.

Вулканические озерные котловины возникли в кратерах вулканов или в понижениях лавовых полей. Это - Кроноцкое и Курильское озера, озера в Новой Зеландии. По солености воды озера делят пресные и соленые. В отличие от рек, режим озер зависит от того, вытекают из него реки - проточное озеро (Байкал) или же это бессточный водоем (Каспийское).

Болота Болота - это участки суши с обильным, застойным или слабопроточным увлажнением грунта в течение большей части года, с характерной (болотной) растительностью, недостатком кислорода и постоянным образованием торфа (слой торфа должен достигать не менее 0,3 м, если торфа меньше - это будут заболоченные земли. Торфом называют полуразложившиеся растительные остатки. Назвать болота водоемами нельзя, так как вода в них содержится в связанном состоянии. Но болота содержат лишь 5-10 % сухого вещества (торфа), остальное - вода. Поэтому болота являются важными аккумуляторами пресной воды. Заболачиванию способствует наличие близкого водоупора и наиболее распространены они в районах с вечной мерзлотой. Наиболее распространены болота в лесах Северного полушария, а также в Бразилии и Индии. Из-за обилия болот и заболоченных лесов лесную зону в Западной Сибири называют лесоболотной. Там же находится и крупнейшее болото в мире - Васюганское. Процессы заболачивания в этом регионе продолжаются и в настоящее время. Средняя горизонтальная скорость распространения кромок болот и наступления их на окружающие леса составляет 10-15 см в год.

Способы образования болот различны. Это и зарастание, заторфовывание водоемов (озер) и застой воды в местах выхода родников и при близком залегании грунтовых вод; а также накопление влаги в понижениях и плоских участках под лесами и лугами (особенно часто заболачиваются лесные вырубки.) По источникам питания выделяют верховые (питаются атмосферными водами), низинные (грунтовое увлажнение) и переходные болота. При классификации по степени богатства субстрата они соответствуют олиготрофным (бедным), евтрофным (богатым) и мезотрофным. Низинные болота образуются преимущественно на самых низких участках рельефа (в поймах, древнеозерных котловинах).

Грунтовые воды сильно минерализованы и, поступая в болото, они обогащают его. Поэтому в низинных болотах густым сплошным покровом растут осоки, хвощи, камыши, мхи, часто встречаются заросли черной ольхи. Здесь обычно находит пристанище множество птиц, и их помет, содержащий азотистые вещества, также обогащает болото.

Торф низинных болот - прекрасное удобрение.

Верховые болота образуются чаще всего на водораздельных пространствах, увлажняются атмосферными водами, очень бедными питательными веществами, и растительность здесь совершенно иная. В основном это мхи и чахлые деревца. Торф верховых болот с бедной растительностью содержит мало золы, поэтому является горючим полезным ископаемым и используется в качестве топлива.

Болота имеют большое водоохранное значение. Накапливая огромные запасы воды, они регулируют водный режим рек и поддерживают стабильность водного баланса территории; очищают проходящие через них воды. Болота являются истоками многих рек. Растительность болот не представляет особой кормовой ценности. Но после осушения они используются под сельскохозяйственные или лесные культуры. Однако при этом часто мелеют и исчезают малые реки.

1.1 Загрязнение поверхностных вод

Качество воды большинства водных объектов не отвечает нормативным требованиям. Многолетние наблюдения за динамикой качества поверхностных вод обнаруживают тенденцию увеличения числа створов с высоким уровнем загрязненности и числа случаев экстремально высокого содержания загрязняющих веществ в водных объектах. Состояние водных источников и систем централизованного водоснабжения не может гарантировать требуемого качества питьевой воды, а в ряде регионов (Южный Урал, Кузбасс, некоторые территории Севера) это состояние достигло опасного уровня для здоровья человека. Службы санитарно-эпидемиологического надзора постоянно отмечают высокое загрязнение поверхностных вод. Около 1/3 всей массы загрязняющих веществ вносится в водоисточники с поверхностным и ливневым стоком с территорий санитарно неблагоустроенных мест, сельскохозяйственных объектов и угодий, что влияет на сезонное, в период весеннего паводка, ухудшение качества питьевой воды, ежегодно отмечаемое в крупных городах, в том числе и в Новосибирске. В связи с этим проводится гиперхлорирование воды, что, однако небезопасно для здоровья населения в связи с образованием хлорорганических соединений.

Одним из основных загрязнителей поверхностных вод является нефть и нефтепродукты. Нефть может попадать в воду в результате естественных ее выходов в районах залегания.

Но основные источники загрязнения связаны с человеческой деятельностью: нефтедобычей, транспортировкой, переработкой и использованием нефти в качестве топлива и промышленного сырья.

Среди продуктов промышленного производства особое место по своему отрицательному воздействию на водную среду и живые организмы занимают токсичные синтетические вещества.

Они находят все более широкое применение в промышленности, на транспорте, в коммунально-бытовом хозяйстве. Концентрация этих соединений в сточных водах, как правило, составляет 5-15мг/л при ПДК -0,1 мг/л. Эти вещества могут образовывать в водоёмах слой пены, особенно хорошо заметный на порогах, перекатах, шлюзах.

Способность к пенообразованию у этих веществ появляется уже при концентрации 1-2 мг/л. Наиболее распространенными загрязняющими веществами в поверхностных водах являются фенолы, легко окисляемые органические вещества, соединения меди, цинка, а в отдельных регионах страны - аммонийный и нитритный азот, лигнин, ксантогенаты , анилин, метил меркаптан, формальдегид и др. Огромное количество загрязняющих веществ вносится в поверхностные воды со сточными водами предприятий черной и цветной металлургии, химической, нефтехимической.

Нефтяной , газовой, угольной, лесной, целлюлозно-бумажной промышленности, предприятий сельского и коммунального хозяйства, поверхностным стоком с прилегающих территорий. Небольшую опасность для водной среды из металлов представляют ртуть, свинец и их соединения. Расширенное производство (без очистных сооружений) и применение ядохимикатов на полях приводят к сильному загрязнению водоемов вредными соединениями.

Загрязнение водной среды происходит в результате прямого внесения ядохимикатов при обработке водоемов для борьбы с вредителями, поступления в водоемы воды, стекающей с поверхности обработанных сельскохозяйственных угодий, при сбросе в водоемы отходов предприятий-производителей, а также в результате потерь при транспортировке, хранении и частично с атмосферными осадками. Наряду с ядохимикатами сельскохозяйственные стоки содержат значительное количество остатков удобрений (азота, фосфора, калия), вносимых на поля.

Кроме того, большие количества органических соединений азота и фосфора попадают со стоками от животноводческих ферм, а также с канализационными стоками. Повышение концентрации питательных веществ в почве приводит к нарушению биологического равновесия в водоеме. Вначале в таком водоеме резко увеличивается количество микроскопических водорослей. С увеличением кормовой базы возрастает количество ракообразных, рыб и других водных организмов. Затем происходит отмирание огромного количества организмов. Оно приводит к расходованию всех запасов кислорода, содержащегося в воде, и накоплению сероводорода. Обстановка в водоеме меняется настолько, что он становится непригодным для существования любых форм организмов. Водоем постепенно «умирает».

Современный уровень очистки сточных вод таков, что даже в водах, прошедших биологическую очистку, содержание нитратов и фосфатов достаточно для интенсивного эвтрофирования водоемов.

Эвтрофизация - обогащение водоема биогенами, стимулирующее рост фитопланктона. От этого вода мутнеет, гибнут бентосные растения, сокращается концентрация растворенного кислорода, задыхаются обитающие на глубине рыбы и моллюски. [9]

1.2.Дезинфекция и обеззараживание поверхностных вод

Еще одним немаловажным блоком любой установки является блок обеззараживания и дезинфекции воды. Под дезинфекцией обычно подразумевается очистки поверхностных вод от всех типов живых микроорганизмов, в числе которых не только потенциально опасные для человеческого здоровья организмы вроде бактерий и вирусов, но и микроводоросли, способные навредить технике, трубопроводу и другим вступающим в контакт с загрязненной водой предметами. А чтобы, например, избежать попадания аналогичных вредных веществ в почву используют системы автономной загородной канализации, информацию о которой можно учесть, наверняка, весьма полезной. Сегодня существует несколько методов очистки стоков, каждый из которых обладает как своими преимуществами, так и своими недостатками, на некоторых из них мы остановимся подробнее.

Одним из наиболее распространенных методов очистки поверхностных вод от потенциально опасных микроорганизмов является их окисление при помощи тех или иных реагентов. Самым дешевым методом является хлорирование воды, так как этот реагент считается самым дешевым. Более дорогим, но более надежным и безопасным реагентом является озон, который после очистки попросту разлагается на безвредные соединения вроде воздуха, воды или углекислого газа в отличии от хлора, который остается в воде и способен нанести вред, как человеческому организму, так и бытовой или промышленной технике.

Еще одним методом очистки поверхностных вод от микроорганизмов является облучение воды ультрафиолетом, которое считается одним из наиболее эффективных и безопасных методов дезинфекции воды. При облучении воды ультрафиолет проникает в ядро живых клеток, нанося ДНК последних необратимые повреждения, которые становятся причиной потери микроорганизмом способности к репродукции. Очистка методом ультрафиолетового облучения сегодня считается одним из наиболее экологических технологий обеззараживания воды, который гарантирует высокое качество и хороший результат.

 

2. ПОДЗЕМНЫЕ ВОДЫ

ПОДЗЕМНЫЕ ВОДЫ - воды, находящиеся в толщах горных пород верхней части земной коры в жидком, твёрдом и парообразном состоянии. Подземные воды являются частью водных ресурсов.

В областях существования подземных вод температура колеблется от -93 до 1200.°С , давление - от нескольких до 3000 МПа. В зависимости от характера пустот водовмещающих пород подземные воды делятся на: поровые - в песках, галечниках и других обломочных породах; трещинные (жильные) - в скальных породах (гранитах, песчаниках); карстовые (трещинно-карстовые) - в растворимых породах (известняках, доломитах , гипсах и др.)

Подземные воды, перемещающиеся под влиянием силы тяжести, называются гравитационными или свободными водами, в отличие от связанных вод (гигроскопические, плёночные, капиллярные и кристаллизационные воды). Слои горных пород, насыщенные гравитационной водой, образуют водоносные горизонты, или пласты, составляющие водоносные комплексы, горные породы которых обладают различной степенью влагоемкости , водопроницаемости и водоотдачи .

Первый от поверхности Земли постоянно существующий безнапорный водоносный горизонт называется горизонтом грунтовых вод.

Непосредственно над их поверхностью (зеркалом грунтовых вод) распространены капиллярные воды, которые могут быть подвешенными, т.е. не сообщающимися с зеркалом грунтовых вод. Всё пространство от поверхности Земли до зеркала грунтовых вод называется зоной аэрации, в которой происходит просачивание вод с поверхности. В зоне аэрации на отдельных разобщённых прослоях пород, обладающих меньшей фильтрационной способностью, в период питания грунтовых вод могут образовываться временные, или сезонные, скопления подземных вод, называющиеся верховодкой.

Подземные воды составляют часть гидросферы - водной оболочки земного шара. Они встречаются а буровых скважинах на глубине до нескольких километров.По данным В.И. Вернандского,подземные воды могут существовать до глубины 60 км в связи с тем, что молекулы воды даже при температуре 2000оС диссоциированы всего на 2% Приблизительные подсчёты запасов пресной воды в недрах Земли до глубины 16 километров дают величину 400 миллионов кубических километров , т.е. около 1/3 вод Мирового океана. Накопление знаний о подземных водах, начавшееся с древнейших времен, ускорилось с появлением городов и поливного земледелия. Искусство сооружения копаных колодцев до несколько десятков метров было известно за 2000-3000 тысячи лет до н.э. в Египте, Средней Азии, Индии, Китае. В этот же период появилось и лечение минеральными вода В первом тысячелетии до нашей эры появились первые представления о свойствах и происхождении природных вод, условиях их накопления и круговороте воды на Земле (в работах Фалеса и Аристотеля - в Древней Греции; Тита Лукреция Кара и Витрувий - в Древнем Риме, и др.)

Изучению подземных вод способствовало расширение работ, связанных с водоснабжением, строительством каптажных сооружений (например, кяризов у народов Кавказа, Ср. Азии), добычей соленых вод для выпаривания соли путем копания колодцев, а затем и бурения (территория России, 12-17 века).

Позже возникли понятия о водах не напорных, напорных (поднимающихся снизу вверх ) и самоизливающихся.

Общая гидрогеология изучает происхождение подземных вод, их физические и химические свойства, взаимодействие с вмещающими горными породами. Изучение подземных вод в связи с историей тектонических движений, процессов осадконакопления и дианогенеза позволило подойти к истории их формирования и способствовало появлению в 20 веке новой отрасли гидрогеологии - палеогидрогеологии (учение о подземных водах прошлых геологических эпох).[13]

2.1.Происхождение подземных вод

Подземные воды формируются в основном из вод атмосферных осадков, выпадающих на землю поверхность и просачивающихся вод в землю на некоторую глубину, и из вод из болот, рек, озер и водохранилищ, так же просачиваются в землю.

Количество влаги, прогоняемой таким образом в почву, составляет 15-20 % общего количества атмосферных осадков. Проникновение вод в грунты (водопроницаемость), слагающих земную кору, зависит от физических свойств этих грунтов.

В отношении водопроницаемости грунты делятся на три основные группы: водопроницаемые, полупроницаемые и водонепроницаемые или водоупорные. К водопроницаемым породам относятся крупнообломочные породы, галечник, гравий, пески, трещиноватые породы и т.д.

К водонепроницаемым породам - массивно- кристаллические породы (гранит, мрамор), имеющие минимальную впитывать в себя влагу, и глины. Последние , пропитавшись водой, в дальнейшем ее не пропускают. К породам полупроницаемым относятся глинистые пески, рыхлые песчаники, рыхловатые мергели и т.п. Подземные воды в земной коре распределены в двух этажах. Нижний этаж, сложенный плотными магматическими и метаморфическими породами, содержит ограниченное количество воды.

Основная масса воды находится в верхнем слое осадочных пород.

В нем по характеру водообмена с поверхностными водами выделяют три зоны: зону свободного водообмена (верхнюю), зону замедленного водообмена (среднюю) и зону весьма замедленного водообмена (нижнюю). Воды верхней зоны обычно пресные и служат для питьевого , хозяйственного и технического водоснабжения . В средней зоне располагаются минеральные воды различного состава. Это - древние воды. В нижней зоне находятся высокоминерализованные рассолы. Из них добывают бром , йод и другие вещества. Подземные воды образуются различными способами.

Один из основных способов образования подземной воды - просачивание, или инфильтрация, атмосферных осадков и поверхностных вод ( озер, рек, морей и т.д.)

По этой теории , просачивающаяся вода доходит до водоупорного слоя и накапливается на нём ,насыщая породы пористого и пористо трещинноватого характера. Таким образом возникают водоносные слои, или горизонты подземных вод. Поверхность грунтовых вод, называется зеркалом грунтовых вод.

Расстояние от зеркала грунтовых вод до водоупора называют мощностью водоупорного слоя . Количество воды, просочившийся в грунт, зависит не только от его физических свойств, но и от количества атмосферных осадков, наклона местности к горизонту, растительного покрова и др.

При этом длительный моросящий дождь создает лучшие условия для просачивания, чем обильный ливень, так как чем интенсивнее осадки, тем с большей скоростью выпавшая вода стекает по поверхности почвы. Крутые склоны местности увеличивают поверхностный сток и уменьшают просачивание атмосферных осадков в грунт; пологие, наоборот, увеличивают их просачивание. Растительный покров (лес) увеличивает испарение выпавшей влаги и в то же время усиливает выпадение осадков. Задерживая поверхностный сток, он способствует просачиванию влаги в грунт. Для многих территорий земного шара инфильтрация является основным способом образования подземных вод. Однако имеется и другой путь их образования - за счёт конденсации водяных паров в горных породах. В тёплое время года упругость водяного пара в воздухе больше, чем в почвенном слое и нижележащих горных породах. Поэтому водяные пары атмосферы непрерывно поступают в почву и опускаются до слоя постоянных температур, расположенного на разных глубинах - от одного до нескольких десятков метров от поверхности земли. В этом слое движение паров воздуха прекращается в связи с увеличением упругости водяных паров при повышении температуры в глубине Земли. Вследствие этого возникает встречный поток водяных паров из глубины Земли вверх - к слою постоянных температур. А в зоне постоянных температур в результате столкновения двух потоков водяных паров происходит их конденсация с образованием подземной воды. Такая конденсационная вода имеет большое значение в пустынях, полупустынях и сухих степях. В знойные периоды года она является единственным источником влаги для растительности. Таким же способом возникли основные запасы подземной воды в горных районах Западной Сибири.

Оба способа образования подземных вод - путём инфильтрации и за счёт конденсации водяных паров атмосферы в породах - главные пути накопления подземных вод. Инфильтрационные и конденсационные воды иногда называются вандозными водами (от лат. "vadare" - идти, двигаться). Эти воды образуются из влаги атмосферы и участвуют в общем круговороте воды в природе. Некоторые исследователи отмечают еще один способ образования подземных вод- ювениальные. Многие выходы этих вод в районах современной или недавней вулканической активности характеризуются повышенной температурой и значительной концентрацией солей и летучих компонентов. Для объяснения генезиса таких вод австрийский геолог Э. Зюсс в 1902 году выдвинул теорию ювенильного (от лат. "juvenilis" - девственный). Такие воды, как считал Зюсс, образовались из газообразных продуктов, в изобилии выделяющихся при вулканической активности и дифференциации магматической лавы. Более поздние исследования показали, что чистых ювенильных вод, как их понимал Э. Зюсс, в поверхностных частях Земли не существует. В природных условиях подземные воды, возникшие разными способами, смешиваются друг с другом, приобретая те или иные свойства. Однако определение генезиса подземных вод имеет большое значение: оно облегчает подсчёт запасов, выяснение режима и их качество. Уровень грунтовых вод подвержен постоянным колебаниям. Так, во время весеннего половодья и паводков уровень воды в реке, поднимаясь выше уровня речного потока, направленного к реке, вызывает отток воды из нее и подъем уровня грунтовых вод. Это снижает высоту уровня весенних половодий. На спаде грунтовые воды начинают питать реку, и уровень грунтовых вод понижается. Грунтовые воды могут образовываться за счет искусственных гидротехнических сооружений например таких, как оросительные каналы. Так, при строительстве Каракумской оросительной системы за счет переброса части стока сибирских рек, в пустынной части значительное количество воды уходило не столько на поливные нужды, сколько на испарение и в грунт. Произошло это вследствие того, что большая часть оросительной системы проходила по песчаным почвам, где коэффициент фильтрации достаточно высок, и несмотря на противофильтрационные меры, падения уровней воды за счет фильтрации воды в грунт были велики. Все это, помимо уменьшения стока рек, приводило к тому, что содержащиеся в грунте соли растворялись грунтовыми водами, и при движении подводных потоков обратно в канал происходило его засоление и загрязнение илом .

2.2 Классификация подземных вод условия их залегания

Существует несколько классификаций подземных вод. По условиям движения в водоносных слоях различают подземные воды, циркулирующие в рыхлых (песчаных, гравийных и галечниковых) слоях и в трещиноватых скальных породах.

Подземные воды, перемещающиеся под влиянием силы тяжести, называются гравитационными, или свободными, в отличие от вод, связанных, удерживаемых молекулярными силами, - гигроскопических, плёночных, капиллярных и кристаллизационных.

В зависимости от характера пустот водовмещающих пород подземные воды делятся на:

·        поровые - в песках, галечниках и др. обломочных породах;

·              трещинные (жильные) - в скальных породах (гранитах, песчаниках);

·              карстовые (трещинно-карстовые) - в растворимых породах (известняках, доломитах, гипсах и др.)

По условиям залегания выделяют три типа подземных вод: верховодку, грунтовые и напорные, или артезианские.

Верховодкой называются подземные воды, залегающие вблизи поверхности земли и отличающиеся непостоянством распространения. Обычно верховодка приурочена к линзам водоупорных или слабо проницаемых горных пород, перекрываемых водопроницаемыми толщами.

Верховодка занимает ограниченные территории, это явление - временное, и происходит оно в период достаточного увлажнения; в засушливое время гола верховодка исчезает. Верховодка относится к первому от поверхности земли водоупорному пласту. В тех случаях, когда водоупорный пласт залегает вблизи поверхности или выходит на поверхность, в дождливые сезоны развивается заболачивание.

К верховодке нередко относят почвенные воды, или воды почвенного слоя. Почвенные воды представлены почти связанной водой. Капельно-жидкая вода в почвах присутствует только в период избыточного увлажнения.

Грунтовые воды. Грунтовыми называются воды, залегающие на первом водоупорном горизонте ниже верховодки. Обычно они относятся к водонепроницаемому пласту и характеризуются более или менее постоянным притоком воды. Грунтовые воды могут накапливаться как в рыхлых пористых породах, так и в твёрдых трещиноватых коллекторах. Уровень грунтовых вод представляет собой неровную поверхность, повторяющую, как правило, неровности рельефа в сглаженной форме: на возвышенностях он ниже, в пониженных местах - выше.

Грунтовые воды перемещаются в сторону понижения рельефа. Уровень грунтовых вод подвержен постоянным колебаниям - на него влияют различные факторы: количество и качество выпадающих осадков, климат, рельеф, наличие растительного покрова, хозяйственная деятельность человека и многое другое.

Грунтовые воды, накапливающиеся в аллювиальных отложениях - один из источников водоснабжения. Они используются как питьевая вода, для полива. Выходы подземных вод на поверхность называются родниками, или ключами.

Напорные, или артезианские воды. Напорными называют такие воды, которые находятся в водоносном слое, заключенном между водоупорными слоями, и испытывают гидростатическое давление, обусловленное разностью уровней в месте питания и выхода воды на поверхность. Область питания у артезианских вод обычно лежит выше области стока воды и выше выхода напорных вод на поверхность Земли. Если в центре такой чаши заложить артезианскую скважину, то вода из нее будет вытекать в виде фонтана по закону сообщающихся сосудов.

Размеры артезианских бассейнов бывают весьма значительными - до сотен и даже тысячи километров. Области питания таких бассейнов зачастую значительно удалены от мест извлечения воды. Так, воду, выпавшую в виде осадков на территории Германии и Польши, получают в артезианских скважинах, пробуренных в Москве; в некоторых оазисах Сахары получают воду, выпавшую в виде осадков над Европой.

Артезианские воды характеризуются постоянством воды и хорошим качеством, что немаловажно для её практического использования.

По происхождению выделяется несколько типов подземных вод.

Инфильтрационные воды образуются благодаря просачиванию с поверхности Земли дождевых, талых и речных вод. По составу они преимущественно гидрокарбонатно-кальциевые и магниевые.

При выщелачивании гипсоносных пород формируются сульфатно-кальциевые, а при растворении соленосных - хлоридно-натриевые воды.

Конденсационные подземные воды образуются в результате конденсации водяных паров в порах или трещинах пород.

Седиментационные воды формируются в процессе геологического осадкообразования и обычно представляют собой измененные захороненные воды морского происхождения - хлоридно-натриевые, хлоридно-кальциево-натриевые и др.

К ним же относятся погребённые рассолы солеродных бассейнов, а также ультрапресные воды песчаных линз в моренных отложениях.

Воды, образующие из магмы при ее кристаллизации и вулканическом метаморфозе горных пород, называются магматогенными, или ювенильными. [13]

3. АТМОСФЕРНЫЕ ВОДЫ

Содержание воды в атмосфере сравнительно невелико - около 0,001% всей ее массы на нашей планете. Тем не менее, это совершенно незаменимое звено природного круговорота воды.

Основным источником атмосферной влаги являются поверхностные водоемы и увлажненная почва; кроме того, влага поступает в атмосферу в результате испарения воды растениями, а также дыхательных процессов живых существ.

Вода в атмосфере находится во всех трех агрегатных состояниях - газообразном (водяной пар), жидком (капли дождя) и твердом (кристаллики снега и льда). Конденсация водяных паров приводит к образованию облаков; атмосферная влага, теряемая в результате осадков, пополняется за счет поступления новых порций испарившейся воды (рис. 1.12). Полное обновление состава воды в атмосфере происходит за 9...10 дней. Таким образом, атмосферная влага является самым активным звеном круговорота воды в природе.

Основное количество водяного пара сосредоточено в нижних слоях воздушной оболочки - в тропосфере, на высоте до нескольких тысяч метров, и почти вся масса облаков находится там. В стратосфере (на высоте около 25 км над Землей) облака появляются реже. Их называют перламутровыми. Еще выше, в слоях мезопаузы, на расстоянии 50...80 км от Земли, изредка наблюдаются серебристые облака. Известно, что они состоят из кристалликов льда и возникают при снижении температуры в мезопаузе до -80°C. Их образование связывают с интересным явлением - пульсацией атмосферы под действием приливных гравитационных волн, вызываемых Луной.

При кажущейся легкости и воздушности облака содержат значительное количество воды. Водность облаков, то есть водосодержание воды в 1 м3, колеблется от 10 до 0,1 г и менее. Поскольку объемы облаков очень велики (десятки кубических километров), то даже одно облако может содержать в виде капель или кристалликов льда сотни тонн воды. Эти гигантские водные массы непрерывно переносятся воздушными потоками над поверхностью Земли, вызывая на ней перераспределение воды и тепла. Поскольку вода обладает исключительно высокой удельной теплоемкостью, испарение ее с поверхности водоемов, из почвы, транспирация растений поглощают до 70% энергии, получаемой Землей от Солнца. Количество теплоты, затраченное на испарение (скрытая теплота парообразования), поступает вместе с водяным паром в атмосферу и выделяется там при его конденсации и формировании облаков. В результате заметно снижается температура водных поверхностей и прилегающего к ним слоя воздуха, поэтому вблизи водоемов в теплое время года намного прохладнее, чем в континентальных районах, которые получают такое же количеств о солнечной энергии.

Масса облаков и водяные пары, содержащиеся в атмосфере, существенно воздействуют и на радиационный режим планеты: с их помощью происходят поглощение и отражение избытка солнечной радиации, и тем самым в известной степени регулируется ее поступление на Землю. Одновременно облака экранируют встречные тепловые потоки, идущие с поверхности Земли, снижая теплопоте-ри в межпланетное пространство. Из всего этого слагается погодообразующая функция атмосферной влаги.

Вследствие высокой «оборачиваемости» атмосферной воды годовое количество осадков для всей планеты составляет около 0,5 млн. км3, то есть превышает содержание влаги в атмосфере в 40 раз. В среднем на поверхность Земли в течение года выпадает слой осадков толщиной 1 м, но реальные их количества весьма неодинаковы для разных областей земного шара. Так, известны три зоны максимума осадков (одна в экваториальной области, две в умеренных широтах обоих полушарий) и четыре зоны минимума осадков (в двух зонах пассатных широт, а также в Арктике и Антарктике). В то время как в некоторых районах Индии или на Гавайских островах годовой уровень осадков превышает 12000 мм, в среднеазиатских пустынях или на северо-востоке Сибири он едва достигает 200 мм.

В течение года осадки выпадают крайне неравномерно. В экваториальных районах наибольшее количество их выпадает дважды в году - после осеннего и весеннего равноденствия, в тропиках и муссонных областях - летом (при почти полном бездождье зимой), в субтропиках - зимой. В умеренных континентальных зонах максимум осадков приходится на лето.

От годового количества осадков во многом зависят производственная деятельность человека в целом, состояние и состав растительности, а следовательно, характер сельского хозяйства. Поэтому так важно исследовать состояние и пути распространения атмосферной влаги, закономерности формирования облачных масс, изучение возможности воздействия на них.

 

4. САНИТАРНЫЕ ТРЕБОВАНИЕ К ВОДОИСТОЧНИКАМ И ИХ ОХРАНА

Санитарная охрана водоисточников и основы водного законодательства

Проблема защиты природных вод в большинстве случаев связана с предупреждением их загрязнения сточными водами коммунальных и промышленных предприятий.

Опыт убеждает, что, несмотря на существующую систему водоочистки, крайне важно принять меры, исключающие значительное загрязнение водоисточников. Для этого устанавливают специальные ЗСО. Под ЗСО понимают специально выделенную вокруг источника территорию, на которой должен соблюдаться установленный режим, с целью охраны водоисточника и водопроводных сооружений и окружающей территории от загрязнения.

Согласно существующим предложениям, независимо от результатов анализа воды к использованию допускаются только такие водные источники, которые могут быть обеспеченны, или уже имеют зону санитарной охраны (ЗСО).

ЗСО - это территория вокруг источников водоснабжения и водопроводных сооружений, на которых необходимо соблюдать специально установленный режим . Цель организации ЗСО - обеспечение охраны водоисточника , водопроводных сооружений и окружающей их территории от загрязнения.

ЗСО следует создавать в первую очередь возле поверхностных водоисточников, которые легко доступны загрязнению. Это мероприятие имеет очень большое значение и в отношении санитарной охраны водоисточников , так как при отсутствии ЗСО они так же могут подвергаться загрязнению.

По законодательству эта зона делится на 3 пояса:

) пояс строгого режима;

) пояс ограничений;

) пояс наблюдения.

ЗСО поверхностных водоемов

Первый пояс (пояс строгого режима) - участок, где находятся место забора воды и головные сооружения водопровода. Сюда включается акватория, примыкающая к водозабору на протяжении не менее 200 м вверх по течению и не менее 100 м ниже водозабора. Здесь выставляется военизированная охрана. Запрещаются проживание и временное пребывание посторонних лиц, а также строительство. В границы 1-го пояса небольших поверхностных источников обычно включается противоположный берег полосой 150-200 м. При ширине водоема менее 100 м в пояс входят вся акватория и противоположный берег - 50 м. При ширине более 100 м в 1-й пояс входит полоса акватории до фарватера (до 100 м). При водозаборе из озера или водохранилища в 1-й пояс входит береговая полоса не менее чем на 100 м от водозабора во всех направлениях. Акватория 1-ого пояса должна быть отмечена бакенами.

Второй пояс (пояс ограничений) - территория, использование которой для промышленности, сельского хозяйства и строительства или совсем недопустимо, или разрешается на известных условиях. Здесь ограничиваются спуск всех сточных вод и массовое купание.

Для открытых водоисточников протяженность пояса вверх по течению определяется расстоянием, выше которого поступление загрязнений не отражается на качестве воды в месте забора. Так, верхняя точка этой границы определяется временем, в течение которого поступившие здесь загрязнения при подходе к водозабору ликвидируются в результате процессов самоочищения. Это время установлено в 3-5 суток. Так как процессы самоочищения в зимний период значительно замедляются, то ЗСО 2-го пояса должна быть удалена от водозабора так, чтобы пробег воды от верхней границы зоны до водозабора обеспечил период бактериального самоочищения не менее 5 суток. Ориентировочно это расстояние для крупных рек составляет вверх по течению 20-30 км, для средних - 30-60 км. Нижняя граница 2-го пояса устанавливается не менее 250 м от водоразбора с учетом ветрового обратного водотечения. Пояс наблюдения -3-й пояс, включающий все населенные пункты, имеющие связь с данным источником водоснабжения.

ЗСО для подземных источников

ЗСО подземных источников устанавливаются вокруг водозаборных скважин, так как защищенность водонепроницаемыми породами не всегда надежна.

Изменение состава подземных вод может иметь место при интенсивном заборе воды из скважины, когда по законам гидродинамики вокруг скважины создаются зоны пониженного давления, что может создать подсос воды. Изменение состава подземных вод может быть обусловлено и влиянием внешних поверхностных загрязнений. Однако его проявление следует ожидать через длительный промежуток времени, так как скорость фильтрации обычно не более 0,1 м в сутки.

На территории зоны строгого режима подземного водоисточника должны размещаться все головные водопроводные сооружения: скважины и каптажи, насосные установки и оборудование для обработки воды.

Зона ограничения устанавливается с учетом мощности скважины и характера грунта. Эта зона для грунтовых вод устанавливается радиусом 50 м и площадью 1 га, для межпластовых вод - 30 м и площадью 0,25 га.

Требования, предъявляемые к качеству воды источника

Гигиенические требования, предъявляемые к качеству воды открытых водоисточников, изложены в СанПиНе 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод». Документ устанавливает гигиенические требования к качеству воды водных объектов для двух категорий водопользования. Первая - когда источник служит для забора воды, используемой для питьевого, хозяйственно-бытового и водоснабжения предприятий пищевой промышленности. Второй - для рекреационного водопользования, когда объект используется для купания, занятий спортом и отдыхом.[8]

Нормативы качества воды

Запах воды не должен превышать 2 баллов, концентрация водородных ионов (рН) не должна выходить за пределы 6,5-8,5 для обеих категорий водопользования. Окраска для первой категории не должна обнаруживаться в столбике высотой 20 см, для второй - 10 см. Концентрация взвешенных веществ при сбросе сточных вод в контрольном растворе не должно увеличиваться по сравнению с естественными условиями более чем на 0,25 мг/дм3 для 1-й категории и более чем на 0,75 мг/дм3 для 2-й категории водоемов. Плавающие примеси обнаруживаться не должны.

. Содержание токсических химических веществ не должно превышать предельно допустимых концентраций и ориентировочно допустимых уровней веществ в водных объектах вне зависимости от категории водопользования.

. Показатели, характеризующие микробиологическую безопасность воды.

Термотолерантные колиформные бактерии в обеих категориях водопользования не должны превышать 100 КОЕ/100 мл, а колифаги - 10 БОЕ/100 мл.

Показатель общих колиформных бактерий для 1-й категории водопользования должен быть не более 1000 КОЕ/100 мл, для 2-й - не более 500 КОЕ/мл.

Жизнеспособных яиц гельминтов, цист патогенных кишечных простейших онкосфер тениид в 25 л пробы воды обеих категорий быть не должно, так же как и возбудителей кишечных инфекций.

Несмотря на почти непрерывное поступление разнообразных загрязнений в открытые водоемы, в их большинстве прогрессирующего ухудшения качества воды не наблюдается. Это происходит потому, что физико-химические и биологические процессы ведут к самоочищению водоемов от взвешенных частиц, органических веществ и микроорганизмов. Сточные воды разбавляются. Взвешенные вещества, яйца гельминтов, микроорганизмы частично осаждаются, вода осветляется. Растворенные в воде органические вещества минерализуются за счет жизнедеятельности населяющих водоемы микроорганизмов. Процессы биохимического окисления заканчиваются нитрификацией с образованием конечных продуктов - нитратов, карбонатов, сульфатов. Для биохимического окисления органических веществ необходимо наличие в воде растворенного кислорода, запасы которого по мере расхода восстанавливаются за счет диффузии из атмосферы.

В процессе самоочищения происходит отмирание сапрофитов и патогенных микроорганизмов. Они погибают вследствие обеднения воды питательными веществами, бактерицидного действия солнечных лучей, бактериофагов, выделяемых сапрофитами.

Гигиенические требования, предъявляемые к качеству воды источников нецентрализованного водоснабжения (подземных источников, предназначенных для удовлетворения питьевых и хозяйственных нужд, при помощи водозаборных устройств без разводящей сети), изложены в СанПиНе 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».[ 10]

Нормативы качества воды

. Органолептические показатели.

Запах и привкус не более 2-3 баллов.

Цветность не более 30°.

Мутность не более 2,6-3,5 ЕМФ (единиц мутности по формазину) или 1,5-2,0 мг/л (по коалину).

. Содержание токсических химических веществ неорганической и органической природы не должно превышать предельно допустимых концентраций.

. Показатели, характеризующие микробиологическую безопасность воды.

Общие колиформные бактерии в 100 мл воды должны отсутствовать. При их отсутствии дополнительно проводят определение глюкозоположительных колиформных бактерий (БГКП) с постановкой оксидазного теста.

ОМЧ (общее микробное число) не должно превышать 100 микробов в 1 мл.

5. РАСЧЕТНАЯ ЧАСТЬ

гигиена вода животное санитарный

Коровник на 200 голов ( привязного содержания) (март месяц)

Таблица 1. Показатели

Показатели

Вариант 1 (№3)

1.Температура воздуха в помещении, °С

10

2.Относительная влажность воздуха, %

75

3.Температура наружного воздуха, °С

- 5,9

4.Абсолютная влажность наружного воздуха, г/м3

2,6

5.Поголовье

200

Живая масса кг

удой

400 кг - 25

----

400 кг - 25

10

400 кг - 20

15

500 кг - 50

10

500 кг - 80

15


Таблица 2. Расчетные данные

Физиологическое Состояние и продуктивность

Живая масса

К-во животных

Выделение водяных паров

Выделение СО2

Живая масса, ц




1голова

всего

1голова

всего


сухостойные

400

25

380

9500

119

2975

10

10

400

25

404

10100

3150

10

15

400

20

458

9160

143

2860

8

10

500

50

455

27730

142

7100

25

15

500

80

507

40560

158

12640

40

Всего:


200


97070


28725

93


.Расчитать часовой объем вентиляции для месяца март по влажности воздуха.

 , где

часовой объём вентиляции, т.е. количество воздуха, которое необходимо заменить в помещении в течении 1 часа для поддержания нормального микроклимата, м3/ч.

Q - количество водяного пара выделяемого за 1 час животными, содержащимися в помещении, г/ч.

X% - количество влаги, испаряющейся во внутренних ограждений помещения в течении 1 часа, г/ч

q2 - абсолютная влажность воздуха в помещении при нормативных значениях температуры и относительной влажности, г/м3.

q1 - абсолютная влажность вводимого в помещение атмосферного воздуха, г/м3.

Q = 97070

X = Q*10% = 9707

t = 10 ° C ; k = 1

q2 = R*E / 100 , где

R - относительная влажность воздуха в помещении согласно ОНТП (табл 5) для животных определенного вида, возраста, физиологического состояния.

E - максимальная влажность воздуха (табл. 6) в помещении при требуемой температуре согласно ОНТП.

q2 = 75 * 9,17 / 100 = 6,8 г/м3

L = м3

.Расчитать часовой объём вентиляции для марта по содержанию СО2 в воздухе.

 , где

К - количество углекислоты, выделяемая за 1 час всеми животными, находящимися в помещении, л/ч.

С2 - допустимое содержание углекислоты в одном кубометре воздуха помещения согласно ОНТП для соответствующего вида животных, л/м3.

С1 - содержание углекислоты в одном кубометре атмосферного воздуха (принимать за 0,3 л/м3).

К = 28725; С1 = 0,3 л/м3

С2 =0, 2% = 2 л/м3

м3

.Расчитать часовой объём вентиляции для марта месяца по нормам воздухообмена на ц или кг живой массы.

 , где

∑ - показатель того, что все произведения суммируются.

М - средняя живая масса одного животного соответствующей половозрелой группы, ц.

n- количество животных в данной половозрелой группе.

L = 93 * 35 = 3255 м3

.Предложить систему вентиляции.

Для вентиляции с естественным побуждением движения воздуха определяют площадь приточных и вытяжных каналов.

∆t = 10 - (-5,9) = 15,9

 = 15,9 м/с ( по таблице 10)

Р =  

Р =  м2

 - скорость движения воздуха в вытяжных трубах, м/с.

- время, выраженное в сек.

Необходимо подсчитать количество вытяжных труб.

n =  ,

n - количество вытяжных каналов.

Р - суммарная площадь поперечного сечения всех вытяжных каналов.

Канал 0,7×0,7

S = 0.49 м2

n =  вытяжных каналов.

Расчёт приточных каналов.

Р1 = Р * 0,7

Р1 = 6,4 * 0,7 = 4,48 м2

Необходимое количество приточных каналов.

n1 =

S1 = 0,17 * 0,35 = 0,06 м2

n1 =  (приточных каналов).

.Расчитать водоснабжение. Предложить систему водоснабжения помещения и рассчитать потребность в воде.

Q ср.сут. = n1q1 + n2q2+ nmqm , где

n1, n2 ….nm - число потребителей каждого вида.

q1, q2 ….qm - средняя суточная норма потребления воды отдельными потребителями (таблица 12).

q = 200 * 100 = 20000 л

Q max сут. = Q ср.сут. * Kсут.

Q max сут. - максимальный суточный расход воды.

Kсут - коэффициент суточной неравномерности : для животноводческого сектора составляет 1,3.

Q max сут. = 20000 * 1,3 = 26000 л

Q ср.час =

Q ср.час = л

Q max час = Q ср.час * Kчас , где

Kчас = 2,5 при наличии автопоения.

Q max час = 1083 * 2,5 = 2707л

Для данного помещения я предлагаю децентрализованную систему водоснабжения, она будет более экономична и целесообразна.

Рассчитать длину водопойных корыт.

L =  ,

L - длина водопойных корыт, м.

N - количество животных.

t - время приема воды одним животным, мин.

l - фронт поения(двухстороннее поение).

T - время водопоя стада, мин.

L =  м

Водопойные корыта предлагаю расположить Г - образно с двух сторон фронтом поения, такое расположение сокращает площадь территорий отводимое под корыто, является рациональным и удобным в использовании.

.Предложить способ удаления навоза и рассчитать площадь объема навозохранилища.( табл. 14)

F =  , где

F - площадь навозохранилища, м2.

 - число животных.

 - число суток хранения навоза.

 - количество навоза от одного животного в сутки, кг.

 - высота бурта укладки навоза.

 - плотность навоза, кг/м3.

 , где

 - количество экскрементов.

- количество подстилки, приходящееся на одно животное.

3

F = 2

Для уборки навоза предлагаю использовать транспортер ТСН-160. Транспортировку от коровника до навозохранилища производить по средствам мобильного автотранспорта. Данный тип уборки удобен.

ЗАКЛЮЧЕНИЕ

Таким образом, понятно, что вода является одним из самых главных факторов внешней среды, воздействующих на организм животных и человека то же. От её качества (физические, химические и биологические показатели) и условий и норм поения зависит продуктивность сельскохозяйственных животных, качество мяса и молока получаемых от них, безопасность и полезность этих продуктов, что, в свою очередь, будет влиять на состояние здоровья людей, употребляющих эти продукты. То есть, обеспечивая все благополучные условия разведения животных, в том числе благоприятное состояние с водным фактором, человек охраняет здоровье животных, и , в первую очередь, своё здоровье.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Вербина Н.М. «Гидрометрия с основами общей микробиологии» / Н.М.Вербина// - М.1990, стр.16-19.

. А.Г. Банников, А.К. Рустамов, А.А Вакулин Охрана природы М.: Агропромиздат 1987. Стр 158.

. Госманова Р.Г. «Санитарная микробиология » / А.Х. Волкова, А.И. Ибрагимова //М.2010. стр.96-219.

4. Жарикова Г.Г. « Микробиология санитария и гигиена» М.2007. стр. 176-178.

. Карюхина Т.А., Чурбанова И.Н. "Контроль качества воды" М: Стройиздат,1986г стр.130

6. Кузнецов А.Ф. «Гигиена содержания животных» / А.Ф. Кузнецов// - М.2000, стр.105-108

. Кузнецов А.Ф., Демчук М.В., Карелин А.И / Общая зоогигиена// Под ред. Кузнецова А.Ф., Демчука М.В. - М.: АГРОПРОМИЗДАТ, 1991. - 399 с

. Кузнецов А.Ф., Демчук М.В., Карелин А.И /гигиена с/х животных// Под ред. Кузнецова А.Ф., Демчука М.В. - М.: АГРОПРОМИЗДАТ, 1991. Стр 104-146

.Линевич С.Н. Водные ресурсы, их подготовка и использование в хозяйственно-питьевом водоснабжении. Проблемы и решения. - Новочеркасск: ЮРГТУ, 2005г. Стр.242

10. Мудрецова-Висс К.А. « микробиология и санитария, и гигиена» / В.П. Дедюхина// М.2009. стр. 208-211.

11. Никитенко А.М. «Санитарно-гигиеническая оценка воды» /А.М. Никитенко, В.А. Журбенко// М.1997. стр.4-14.

.«Руководство по контролю качества питьевой воды»/ Т.1. - ВОЗ - Женева, 1994.

. Эмото М. Послание воды. - М.: София. 2006. Стр. 97

Похожие работы на - Гигиена содержания животных

 

Не нашел материал для своей работы?
Поможем написать качественную работу
Без плагиата!