Минералы

  • Вид работы:
    Реферат
  • Предмет:
    Геология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    16,34 Кб
  • Опубликовано:
    2012-11-09
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Минералы

Оглавление

Введение

1. Происхождение, физические и химические свойства минералов

1.1 Общее представление о минералах

1.2 Происхождение минералов

1.3 Физические свойства минералов

1.4 Химические свойства минералов

2. Пылеватые и глинистые сцементированные и сильноуплотненные породы

Заключение

Список литературы

Введение

Геология (греч. "гео" - земля, "логос" - учение) - одна из важнейших наук о Земле. Она занимается изучением состава, строения, истории развития Земли и процессов, протекающих в ее недрах и на поверхности

Одним из нескольких основных направлений в геологии является изучение вещественного состава литосферы: горных пород, минералов, химических элементов.

Изучением вещественного состава литосферы занимается комплекс геологических наук, объединяющихся часто под названием геохимического цикла. К ним относятся: петрография (греч. "петрос" - камень, скала, "графо" - пишу, описываю), или петрология - наука, изучающая магматические и метаморфические горные породы, их состав, структуру, условия образования, степень изменения под влиянием различных факторов и закономерность распределения в земной коре. Литология (греч. "литос" - камень) - наука, изучающая осадочные горные породы. Минералогия - наука, изучающая минералы - природные химические соединения или отдельные химические элементы, слагающие горные породы. Кристаллография и кристаллохимия занимаются изучением кристаллов и кристаллического состояния минералов. Геохимия - обобщающая синтезирующая наука о вещественном составе литосферы, опирающаяся на достижения указанных выше наук и изучающая историю химических элементов, законы их распределения и миграции в недрах Земли и на ее поверхности. С рождением изотопной геохимии в геологии открылась новая страница в восстановлении истории геологического развития Земли.

Одна из важнейших задач геологии - прогнозирование залежей минерального сырья, составляющего основу экономической мощи государства. Этим занимается наука о месторождениях полезных ископаемых, в сферу которой входят как рудные и нерудные ископаемые, так и горючие - нефть, газ, уголь, горючие сланцы. Не менее важным полезным ископаемым в наши дни является вода, особенно подземная, происхождением, условиями залегания, составом и закономерностями движений которой занимается наука гидрогеология (греч. "гидер" - вода), связанная как с химией, так и с физикой и, конечно, с геологией.

1. Происхождение, физические и химические свойства минералов

.1 Общее представление о минералах

Минералы - это природные соединения химических элементов. Минералы интересовали человека с незапамятных времен. Еще в каменном веке такие минералы, как халцедон, нефрит, обсидиан, помогали человеку добывать пищу и огонь. Слово minera, образующее корень нынешнего слова «минерал», обозначало руду - камень, дающий металл. Значение минералов как сырья, используемого для выплавки металлов, составляющих основу промышленного производства, неоспоримо велико.

Многие минералы применяются в качестве огнеупорных, керамических, изоляционных, красящих и других материалов в различных отраслях народного хозяйства и производства. Однако, человека всегда привлекала не только выгодная польза минералов жизни. Людям нравилась сама суть минералов, их цвета, естественная огранка. Человек, все же стремившийся на протяжении всего своего существования к прекрасному, никогда бы не смог пройти мимо минералов.

Однако, несмотря на изученность, минерал не перестал быть интересным человеку. В последние десятилетия даже наоборот увеличился интерес к минеральным камням. Наибольшее распространение получило частной коллекционирование минералов. Для них также устраиваются целые тематические выставки в музеях.

Минералогия относится к числу наук, занимающихся изучением вещества земной коры; это одна из отраслей геологических наук. Шахты для добычи минералов и горных пород не только не потеряли своего прежнего значения, а, наоборот, становятся все крупнее и на них возлагаются все большие надежды. Ныне под минералами понимают (за немногими исключениями) кристаллические компоненты твердой земной коры, имеющие однородный состав. В настоящее время известно около 2000 минеральных видов, такое их число установлено с научной достоверностью. Однако, в своем большинстве минералы встречаются редко, и в формировании твердой земной коры принимают существенное участие лишь относительно немногие минералы.

1.2 Происхождение минералов

Минералогия исследует происхождение, условия нахождения и природные ассоциации минералов. Со времени возникновения Земли примерно 4,6 млрд. лет назад многие минералы разрушились в результате механического дробления, химических преобразований или плавления. Но элементы, слагавшие эти минералы, сохранились, перегруппировались и образовали новые минералы. Таким образом, существующие ныне минералы являются продуктами процессов, развивавшихся на протяжении геологической истории Земли.

Большая часть земной коры сложена изверженными породами, которые местами перекрыты относительно маломощным покровом осадочных и метаморфических пород. Поэтому состав земной коры в принципе соответствует усредненному составу изверженной породы. Восемь элементов составляют 99% массы земной коры и соответственно 99% массы слагающих ее минералов.

По элементному составу земная кора представляет собой каркасную постройку, состоящую из ионов кислорода, связанных с более мелкими ионами кремния и алюминия. Таким образом, главными минералами являются силикаты, на долю которых приходится ок. 35% всех известных минералов и ок. 40% - наиболее распространенных. Важнейшие из них - полевые шпаты (семейство алюмосиликатов, содержащих калий, натрий и кальций, реже - барий). Другие распространенные породообразующие силикаты представлены кварцем (впрочем, он чаще относится к оксидам), слюдами, амфиболами, пироксенами и оливином.

Изверженные породы. Изверженные, или магматические, породы образуются при охлаждении и кристаллизации расплавленной магмы. Процентное содержание различных минералов и, следовательно, тип образовавшейся породы зависят от соотношения элементов, содержавшихся в магме во время ее затвердевания. Каждый тип изверженной горной породы обычно состоит из ограниченного набора минералов, называющихся главными породообразующими. В дополнение к ним могут присутствовать в меньших количествах второстепенные и акцессорные минералы. Например, главными минералами в граните могут быть калиевый полевой шпат (30%), натрий-кальциевый полевой шпат (30%), кварц (30%), слюды и роговая обманка (10%). В качестве акцессорных минералов могут присутствовать циркон, сфен, апатит, магнетит и ильменит.

Изверженные породы обычно классифицируют в зависимости от вида и количества каждого из содержащихся в них полевых шпатов. Однако в некоторых породах полевой шпат отсутствует. Далее изверженные породы классифицируют по их структуре, которая отражает условия затвердевания породы. Медленно кристаллизующаяся глубоко в недрах Земли магма порождает интрузивные плутонические породы с крупно- или среднезернистой структурой. Если магма извергается на поверхность в виде лавы, она быстро остывает, и возникают тонкозернистые вулканические (эффузивные, или излившиеся) породы. Иногда некоторые вулканические породы (например, обсидиан) остывают столь быстро, что не успевает произойти их кристаллизация; подобные породы имеют стекловидный облик (вулканические стекла).

Осадочные породы. Когда коренные породы выветриваются или размываются, обломочный или растворенный материал оказывается включенным в состав осадочных пород. В результате химического выветривания минералов, происходящего на границе литосферы и атмосферы, формируются новые минералы, например, глинистые - из полевого шпата. Некоторые элементы высвобождаются при растворении минералов (например, кальцита) в поверхностных водах. Однако другие минералы, например кварц, даже механически раздробленные, сохраняют устойчивость к химическому выветриванию.

Высвободившиеся при выветривании механически и химически устойчивые минералы с достаточно высокой плотностью образуют на земной поверхности россыпные месторождения. Из россыпей, чаще всего аллювиальных (речных), добывают золото, платину, алмазы, иные драгоценные камни, оловянный камень (касситерит), минералы других металлов. В определенных климатических условиях формируются мощные коры выветривания, нередко обогащенные рудными минералами. С корами выветривания бывают сопряжены промышленные месторождения бокситов (руд алюминия), скопления гематита (железных руд), водных силикатов никеля, минералов ниобия и других редких металлов.

Основная масса продуктов выветривания выносится по системе водотоков в озера и моря, на дне которых образует слоистую осадочную толщу. Глинистые сланцы сложены в основном глинистыми минералами, а песчаник состоит преимущественно из сцементированных зерен кварца. Растворенный материал может извлекаться из воды живыми организмами или выпадать в осадок в результате химических реакций и испарения. Карбонат кальция поглощается из морской воды моллюсками, которые строят из него свои твердые раковины. Большая часть известняков образуется в результате аккумуляции раковин и скелетов морских организмов, хотя частично карбонат кальция осаждается химическим путем.

Эвапоритовые залежи формируются в результате испарения морской воды. Эвапориты - обширная группа минералов, в число которых входят галит (поваренная соль), гипс и ангидрит (сульфаты кальция), сильвин (хлорид калия); все они имеют важное практическое применение. Эти минералы осаждаются также при испарении с поверхности соляных озер, но в этом случае повышение концентрации редких элементов может привести к дополнительному осаждению некоторых других минералов. Именно в такой обстановке образуются бораты.

Метаморфические породы. Региональный метаморфизм. Изверженные и осадочные породы, захороненные на большой глубине, под действием температуры и давления испытывают преобразования, называющиеся метаморфическими, в ходе которых меняются первоначальные свойства горных пород, а исходные минералы перекристаллизовываются или полностью трансформируются. В результате минералы обычно располагаются вдоль параллельных плоскостей, придавая породам сланцеватый облик. Тонкосланцеватые метаморфические породы называются сланцами. Они часто бывают обогащены пластинчатыми силикатными минералами (слюдой, хлоритом или тальком). Более грубосланцеватые метаморфические породы - гнейсы; в них чередуются полосы кварца, полевого шпата и темноцветных минералов. Когда сланцы и гнейсы содержат какой-либо типично метаморфический минерал, это отражается в названии породы, например, силлиманитовый или ставролитовый сланец, кианитовый или гранатовый гнейс.

Контактовый метаморфизм. При подъеме магмы в верхние слои земной коры в породах, в которые она внедрилась, обычно происходят изменения, т.н. контактовый метаморфизм. Эти изменения проявляются в перекристаллизации первоначальных или образовании новых минералов. Степень метаморфизма зависит как от типа магмы, так и от типа породы, которую она пронизывает. Глинистые и близкие им по химическому составу породы преобразуются в контактовые роговики (биотитовые, кордиеритовые, гранатовые и др.). Наиболее интенсивные изменения происходят, когда гранитная магма внедряется в известняки: термическое воздействие является причиной их перекристаллизации и образования мрамора; в результате химического взаимодействия с известняками отделяющихся от магмы растворов образуется большая группа минералов (силикаты кальция и магния: волластонит, гроссуляровый и андрадитовый гранаты, везувиан, или идокраз, эпидот, тремолит и диопсид). В некоторых случаях при контактовом метаморфизме привносятся рудные минералы, что делает породы ценными источниками получения меди, свинца, цинка и вольфрама.

Метасоматоз. В результате регионального и контактового метаморфизма не происходит существенного изменения химического состава исходных пород, а меняются лишь их минеральный состав и внешний облик. Когда растворами привносятся одни элементы и выносятся другие, происходит значительное изменение химического состава пород. Такие вновь образовавшиеся породы называются метосоматическими. Например, взаимодействие известняков с растворами, выделяемыми гранитной магмой в ходе кристаллизации, приводит к образованию вокруг гранитных массивов зон контактово-метасоматических руд - скарпов, которые нередко вмещают оруденение.

1.3 Физические свойства минералов

Минералы классифицируются по химическому составу и кристаллическому строению. Из этого следует, что правильно определить минерал мы можем, только зная его точный химический состав и параметры кристаллической решетки. Для этого в современной геологии используется большой арсенал химических и физических методов исследований. Между тем часто встает задача определить, хотя бы приблизительно, минерал без применения лабораторных исследований, например, в поле. Это возможно, поскольку каждый минерал имеет целый ряд относительно постоянных свойств, по которым его можно диагностировать.

Для определения минерала используют следующие его признаки:

блеск,

цвет,

цвет в порошке (цвет черты),

твердость,

плотность,

спайность,

излом,

форма агрегатов.

Рассмотрим подробнее каждый из признаков.

. Блеск у минералов бывает металлический (как у большинства сульфидов и самородных металлов), полуметаллический (графит, гематит) и неметаллический. Неметаллический блеск подразделяется на:

стеклянный (флюорит, плагиоклаз; в целом 70% всех известных минералов),

алмазный (алмаз, берилл),

жирный (нефелин, сера),

перламутровый (опал, тальк),

шелковистый (гипс, роговая обманка),

матовый - отсутствие блеска (боксит).

Блеск минерала связан прежде всего с его показателем преломления. Металлический блеск характерен для непрозрачных минералов, имеющих показатель преломления n > 3,0. Полуметаллический блеск отмечается у непрозрачных минералов с n = 2,6-3,0. Алмазный блеск встречается у минералов с n = 1,9-2,6. У минералов со стеклянным блеском n = 1,3-1,9. Прочие разновидности блеска проявляются в силу разной структуры поверхности минералов.

Необходимо отметить, что один и тот же минерал может иметь разный блеск в зависимости от формы агрегатов и от того, по какой плоскости спайности (см. ниже) он сколот.

. Цвет минералов бывает собственным, то есть определяемым его основными компонентами, и примесным, то есть определяемый микроскопическими примесями в минерале. Только немногие минералы всегда имеют постоянную (собственную) окраску: гранаты, малахит, вивианит. Большинство минералов имеет примесную окраску, которая может варьировать в широких пределах. Например, калиевый полевой шпат в зависимости от микропримесей может быть белым, красным или ярко-зелёным. В результате окраска в большинстве случаев имеет значение для сужения области поиска (так, оливин не может быть белым, нефелин не может быть чёрным и т. п.).

. Более постоянным признаком является цвет минерала в порошке. Это позволяет отделить собственный цвет минерала от примесного: при собственном цвете порошок имеет окраску, близкую к цвету минерала, а при примесной окраске он обычно белый. Практически цвет в порошке определяют путем проведения черты минералом по специальной керамической табличке (бисквиту). Таким образом легко различать, например, магнетит (магнитный железняк), гематит (красный железняк) и лимонит (бурый железняк). Эти минералы, часто имеющие сходную окраску в землистых агрегатах, дают черту разного цвета: магнетит чёрную, гематит вишнево-красную, а лимонит бурую. Однако некоторые минералы при изменении окраски изменяют и цвет черты, если содержат в себе микроскопические кристаллы других минералов. Надо отметить, что на бисквите оставляют черту только минералы, которые мягче бисквита (твердость < 6, см. ниже), в противном случае минерал царапает керамическую табличку.

. Твёрдость минералов принято определять не в абсолютных величинах, а путем сравнения с эталонными минералами, имеющими постоянную твёрдость. Для этого применяется так называемая шкала Мооса, в которой твёрдость возрастает от первого минерала до десятого:

тальк,

гипс,

кальцит,

флюорит,

апатит,

калиевый полевой шпат,

кварц,

топаз,

корунд,

алмаз.

Твёрдость определяемого минерала определяют путем проведения с силой эталонным минералом по испытуемому. Если эталонный минерал оставляет царапину на испытуемом, то твердость испытуемого минерала меньше, чем эталонного, если не оставляет, то твердость испытуемого минерала равна или выше, чем эталонного. Например, минерал, на котором оставляет черту апатит, но не оставляет черту флюорит, имеет твердость от 4 до 5. В случаях, когда шкалы нет под рукой, можно воспользоваться следующими предметами для определения твердости минерала: грифель карандаша (твердость 1), ноготь (твердость 2-2,5), монета (твердость 3-4), стекло (твердость 5), гвоздь (твердость 6) и напильник (твердость 7).

Хотя шкала Мооса представляет из себя метод качественной оценки твёрдости минералов, она используется чрезвычайно широко и без изменений уже 175 лет. Современные методы оценки пластической и упругой деформации требуют специального оборудования и не всегда применимы, а шкала легка в использовании и даёт достаточно достоверные результаты. Следует учитывать, что интервалы шкалы не равны между собой: они прогрессивно увеличиваются от 1 до 10.

. Плотность минералов выражается в г/см3. Достаточно часто используется другой показатель - удельный вес, безразмерная величина, указывающая отношение плотности минерала к плотности воды. Численно он равен плотности. Самый плотный минерал - самородный иридий, имеющий плотность 22,8 г/см3, а самый лёгкий - нефть, имеющая плотность 0,8 г/см3. Большинство минералов имеет плотность от 2 до 5 г/см3. Поскольку в поле мы не можем измерить точно массу и объем минерала, плотность является диагностическим признаком только для очень плотных минералов. Так, например, барит (тяжёлый шпат) безошибочно определяется как более увесистый, чем другие светлые минералы. Ильменит и галенит также могут определяться по высокой плотности. Опал может быть определен как более легкий, чем большинство минералов.

. Спайностью называется способность минерала раскалываться по ровным плоскостям. Если при расколе получается идеальная плоскость, то спайность называется совершенной. Минералы с совершенной спайностью достаточно трудно расколоть в других направлениях. Если плоскость относительно ровная, а минерал охотно раскалывается как по спайности, так и в других направлениях, то спайность называется ясной. Если же плоскости вообще не образуется, то говорят, что спайность несовершенная. Спайность может проявляться по одной плоскости, как в биотите и мусковите. Они легко откалываются пластинками, но не дают ровных плоскостей при разломе в другом направлении. Бывает также спайность по двум и трём плоскостям. В кальците и доломите, для которых характерна совершенная спайность по ромбоэдру (по трём плоскостям), хорошо заметны ступеньки, образующиеся на сколе. Спайность минерала - это важный диагностический признак. Благодаря ему можно, например, отличить кварц, имеющий несовершенную спайность, от плагиоклазов, имеющих совершенную спайность по одной плоскости.

. Изломом называется форма поверхности, образующейся при расколе минерала не по плоскости спайности. В большинстве минералов излом раковистый (т.е. напоминающий раковину). Если излом имеет иную форму (выделяется занозистый, землистый, зернистый, ровный излом), он является диагностическим признаком. Роговая обманка может быть диагностирована по занозистому излому. В ряде случаев излом трудно отделить от плоскости ясной спайности.

. Форма агрегатов может быть разнообразной у каждого минерала. В некоторых случаях этот признак может быть диагностическим для тех минералов, которые образуют своеобразные, характерные только для них агрегаты. Например, минерал серпентин иногда образует волокна (эта его разновидность называется хризотил-асбест). Роговая обманка часто встречается в виде игольчатых агрегатов. Гипс иногда образует характерные сдвоенные сростки кристаллов ("ласточкины хвосты").

При определении минералов надо фиксировать все перечисленные выше свойства, так как только их комплекс может дать правильный результат. Некоторым минералам присущи особые свойства, облегчающие их определение.

1.4 Химические свойства минералов

Простые химические и физико-химические исследования, с помощью которых устанавливается качественный и количественный химический состав минералов, весьма многообразны. Уже такое свойство, как растворимость, позволяет разделить мир минералов на трудно-и легкорастворимые минералы. При определении минералов по внешним признакам часто применяются простые химические испытания кислотами. Минеральное вещество, превращенное в порошок, растворяется или разлагается в кислотах. Раствор может быть бесцветным, окрашенным или мутным. Очень часто в сосуде остается нерастворимый осадок.

Под действием реагента нередко выпадает хлопьевидный осадок. При этом наблюдается характерное окрашивание, особенно типичное в тех случаях, когда мы имеем дело с металлическими соединениями. Таким простым способом можно обнаружить соединения железа, никеля, меди, кобальта и др. Известен ряд качественных и полуколичественных реакций, в том числе окрашивание пламени (бунзеновской горелки), поведение минерального вещества при прокаливании в горячей части пламени, в закрытой или открытой стеклянной трубочке. Так, если в минерале присутствует кристаллизационная вода, как, например, в гипсе, влага в виде капель собирается в холодной части сосуда. Некоторые минералы, особенно сульфиды, при обжиге выделяют вонючие пары двуокиси серы. Мышьяксодержащие минералы (лёллингит, арсенопирит) образуют в стеклянной трубочке металлическое зеркало. Аналогично ведут себя сульфиды, содержащие сурьму. Однозначно определяются также капельки ртути на стенках стеклянной трубочки, когда этим способом исследуются минералы, содержащие ртуть.

Дальнейшие диагностические возможности предоставляют реакции плавления с помощью паяльной трубки на древесном угле с добавкой буры, соды и др. Прежде всего таким путем определяют рудные минералы, которые при плавлении оставляют специфический металлический королек или образуют некоторые химические соединения. При испытании других рудных минералов на угле в качестве продукта реакции возникает белый или цветной (обычно пылеватый) налет.

Контроль реакции плавления производится обычно следующим образом. Если поместить паяльную трубку в пламя и вдувать воздух, то возникает острое длинное синее несветящееся окислительное пламя. Если паяльную трубку держат возле пламени, так что пламя при дутье отклоняется в сторону, то пламя остается светящимся желтым - это восстановительное пламя. Раскаленный свободный углерод восстанавливает пробу минерала, когда она охвачена светящейся частью пламени.

К числу методов реакций плавления относится также сплавление минеральных веществ в стекловатые перлы с применением буры или соды, благоприятствующих процессу плавления. Такой способ особенно эффективен в случае тугоплавких минералов. К этим методам относится применяемый на протяжении нескольких столетий анализ с помощью паяльной трубки. Здесь не упоминаются современные детальные химико-аналитические методы, применяемые в научных лабораториях, где производится полный химический анализ минералов и определение элементов-примесей.

2. Пылеватые и глинистые сцементированные и сильноуплотненные породы

Типичными представителями сцементированных пород глинистого и пылеватого состава являются алевролиты и аргиллиты.

Алевролиты и аргиллиты образуются при окаменении песчано-пылеватых и глинистых пород вследствие их уплотнения, повышения температуры, кристаллизации коллоидов. Аргиллиты типичны для платформенных областей, алевролиты встречаются как в платформенных, так и в складчатых областях. Во втором случае они часто несут следы метаморфизма.

Алевролиты и аргиллиты редко образуют однородные тела значительных размеров. Чаще они залегают прослоями в толще песчаных или песчано-карбонатных пород. В зависимости от гранулометрического состава они могут быть песчаными, пылеватыми или глинистыми. Это обстоятельство должно учитываться при изучении их физико-механических свойств. Следует, однако, иметь в виду, что гораздо большее влияние на прочностные показатели алевролитов и аргиллитов оказывает состав и тип цемента.

В зависимости от цемента алевролиты и аргиллиты образуют обширный ряд последовательных переходов от слабопрочных разностей, близких по своим свойствам к плотным глинам, до окварцованных пород, прочность которых превышает 1000 кГ/см3.

В большинстве случаев алевролиты и аргиллиты в инженерно-геологической практике оцениваются как породы, обладающие худшими показателями, чем песчаники. Объясняется это четко выраженной слоистостью тонкозернистых пород и благодаря этому высокой анизотропностью их свойств. По базальным поверхностям алевролиты и аргиллиты легко выветриваются, часто образуют подвижные осыпи на склонах. Вместе с тем массивные алевролиты могут приближаться по прочности к крепким песчаникам, а в некоторых случаях превосходить их. Например, палеозойские и мезозойские алевролиты и аргиллиты района Братского водохранилища (Пальшин, 1963) характеризуются средними значениями объемного веса от 2,10 до 1,34 Г/см3, а пористости от 14 до 22%. Образцы алевролитов в сухом состоянии имеют значения временного сопротивления сжатию 128-396 кГ/см2.

Большое различие в показателях свойств зависит от состава пород, их структуры и текстуры, характера цементационных связей. Породы неморозостойки, не выдерживают механического размягчения и резких температурных напряжений.

Физико-механические свойства алевролитов и аргиллитов резко снижаются с увеличением степени выветрелости этих пород. Так, невыветрелые юрские аргиллиты района г. Иркутска характеризуются пределом прочности сжатию в среднем около 550 кГ/см2, а выветрелые разности их имеют прочность менее 100 кГ/см2 в воздушно-сухом состоянии и менее 20 кГ/см2 после водонасыщения. Та же зависимость прослежена для алевролитов. Можно при этом предположить, что слабые алевролиты и аргиллиты благодаря их высокой пористости и значительной влагоемкости должны легко разрушаться.

Существенно иными физико-механическими свойствами обладают палеозойские аргиллиты северо-западной окраины Сибирской платформы. Эти породы встречаются здесь в виде прослоев в толще терригенных пород верхнекаменноугольного-нижнепермского (тунгусская серия) возраста и в составе сульфатно-доломитового комплекса пород девонского возраста.

Аргиллиты тунгусской серии представляют собой плотные породы, содержащие до 30% алевритовых частиц кварц-полевошпатового состава. Как правило, они имеют тонкослоистую текстуру, которая обусловливает анизотропию физико-механических свойств и способствует интенсивному расслоению породы при разгрузке и выветривании.

Объемный вес аргиллитов составляет в среднем 2,61 Г/см3, при крайних значениях 2,56-2,69 Г/см3. Открытая пористость, по данным водонасыщения, равна 1%, при крайних значениях 0,4-1,5%. Прочность на сжатие воздушно-сухих образцов изменяется от 320 кГ/см2до 1600 кГ/см2, при среднем значении 790 кГ/см2. При водонасыщении прочность пород на сжатие снижается более чем в два раза, а прочность на разрыв не превышает 50 кГ/см2. Гораздо более высокими показателями физико-механических свойств характеризуются девонские аргиллиты того же района. В отличие от предыдущих это часто известковистые породы, а иногда доломитизированные. Объемный вес их составляет 2,75 кГ/см3, что значительно выше, чем у аргиллитов терригенного комплекса. Открытая пористость их превышает 0,5%. Прочность на сжатие изменяется от 400 кГ/см2 у слабых трещиноватых разностей до 1700 кГ/см2 у прочных образцов при среднем значении 1080 кГ/см2. При водонасыщении прочность снижается до 800 кГ/см2, это значительно отличает их от пород тунгусской серии.

Объяснения различиям свойств описанных аргиллитов следует искать прежде всего в разном составе их цемента и в некоторой метаморфизованности более древних отложений.

Породы выветриваются быстро, чему способствуют слоистая текстура и слюдисто-глинистый состав цемента. Многие образцы из скважин на поверхности быстро рассыпаются в труху, размокают в воде в течение первых суток. Установлено также, что глинистые алевролиты по сравнению с песчаными обладают меньшим объемным весом и соответственно большей пористостью.

Приведенные примеры показывают, что глинистые сцементированные породы обладают весьма различными физико-механическими свойствами и обычно образуют наиболее слабые прослои в массивах терригенных пород.

Заключение

минерал аргиллит алевролит порода

Изучение вещественного состава литосферы, как и других процессов, производится различными методами. В первую очередь это прямые геологические методы - непосредственное изучение горных пород в естественных обнажениях на берегах рек, озер, морей, разрезов шахт, рудников, кернов буровых скважин. Все это ограничено относительно небольшими глубинами. Помимо указанных прямых методов в изучении веществ литосферы широко применяются оптические методы и другие, физические и химические исследования - рентгеноструктурные, спектрографические и др. При этом широко используются математические методы на основе ЭВМ для оценки достоверности химических и спектральных анализов, построения рациональных классификаций горных пород и минералов и др. В последние десятилетия применяются, в том числе и с помощью ЭВМ, экспериментальные методы, позволяющие моделировать геологические процессы; искусственно получать различные минералы, горные породы; воссоздавать огромные давления и температуры и непосредственно наблюдать за поведением вещества в этих условиях; прогнозировать движение литосферных плит и даже, в какой-то степени, представить облик поверхности нашей планеты в будущие миллионы лет.

Список литературы

1.Рапацкая Л.А. Общая геология / М.: Высшая школа. 2004.

2.Общая геология: в 2 тт. / Под ред. Л.К. Соколовского/ М.: КДУ, 2006.

.Бетехтин А.Г. Курс минералогии: учебное пособие /М.: КДУ, 2007.

.#"justify">.#"justify">.http://geosience.ru

Похожие работы на - Минералы

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!