Кинематика

  • Вид работы:
    Учебное пособие
  • Предмет:
    Физика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    5,05 Mb
  • Опубликовано:
    2010-05-19
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Кинематика

Кинематика

тема 1 кинематика точки

1.1 предмет изучения

С самого рождения и на протяжении всей своей жизни мы встречаемся с движением материи. Простейшей формой движения материи является механика. В разделе «кинематика» мы будем изучать только одну сторону механического движения – геометрическую, т.е. мы будем изучать геометрию движения тела без учета его массы и сил, действующих на него. Механически движение в общем смысле будет изучаться в разделе «динамика».

Под движением в механике мы будем понимать перемещение данного тела в пространстве и времени по отношению к другим телам.

Для определения положения движущего тела вводится система отсчета, связанная с телом, условно принимаемым за неподвижное. Движение тела происходит в пространстве и времени. Мы будем рассматривать трехмерное эвклидо пространство. За единицу длины в нем принимается 1 метр. Время считается универсальным, т. е. не зависящим от выбранной системы отсчета. За единицу времени принимается 1 секунда. В задачах механики время принимается за независимую переменную. Все остальные кинематические величины (расстояния, скорости, ускорения и т.д.) являются функциями времени.

Прежде чем изучать движение его необходимо задать, т.е. описать каким-либо математическими формулами так, чтобы можно было узнать положение тела и все его кинематические характеристики в любой момент времени.

Основная задача кинематики заключается в том, чтобы по известному закону движения тела (или какой-либо его точки) найти все остальные
 кинематические характеристики движения.

Изучение кинематики мы начнем с изучения движения простейшего тела – точки, т.е. такого тела, размерами которого можно пренебречь и рассматривать его как геометрическую точку.

1.2 Способы задания движения точки

Мы будем рассматривать три способа задания движения: векторный, координатный и естественный.

1.2.1 Векторный способ

Положение движущейся точки М определяется с помощью радиуса вектора , проведенного из некоторого неподвижного центра О в эту точку (рис. 1.1). В процессе движения этот вектор изменяется по величине и направлению, т.е. является функцией времени. Зависимость

 (1.1)

называется уравнением движения (или законом движения) в векторной форме. Линия, описываемая концом этого вектора называется траекторией движения.

 
 

1.2.2 Координатный способ

С неподвижным центром О связывается неподвижная система координат ОХ у Z. Положение точки определяется тремя координатами: х, у, z (рис. 1.2). В процессе движения эти координаты изменяются, т.е. они являются функциями времени.

 
 







Зависимости

х=f1(t);        у=f2(t);        z=f3(t)          (1.2)

называются уравнениями движения точки в координатной форме. Эти уравнения являются одновременно параметрическими уравнениями траектории движения (параметром является t).

Чтобы получить уравнение траектории в явной форме, надо из уравнений (1.2) исключить параметр t.

1.2.3 Естественный способ

При естественном способе задания движения траектория заранее известна. На траектории выбирается начало отсчета (т. 0) и устанавливается положи-тельное и отрицательное направления отсчета.

Положение точки на траектории однозначно определяется криволинейной координатой S, измеряемой вдоль траектории. Зависимость

S = f(t) (1.3)

называется уравнением движения в естественной форме.

 
 

1.2.4 Связь между способами задания движения

Координатный векторный способы связаны зависимостью:

 (1.4)

где  - единичные орты координатных осей.

Переход от координатного способа к естественному:


здесь: ;            

(т.е. здесь и в дальнейшем производная по времени обозначается точкой над буквой).

1.3 Определение скорости и ускорение точки при векторном задании движения

Пусть точка за время  переходит из положения М в положение М1, двигаясь вдоль траектории (Рис. 1.4)  называется вектором перемеще-ния.  - средняя скорость.

Например, вектор  по хорде М М1. если уменьшать промежуток времени , то хорда будет приближаться к касательной, а средняя скорость к мгновенной.

Рис. 1.4

 (1.6)

Направлен вектор скорости по касательной к траектории.

Определение ускорения:

Пусть в положении М скорость , а в положении М1 (через время ) скорость . Приращение скорости (рис. 1.5).

Среднее ускорение:

Ускорение в данный момент

  (1.7)

Лежит вектор ускорения в плоскости, проведенных через касательной к траектории в двух бесконечно близких точках. Эта плоскость называется соприкасающейся или плоскостью главной кривизны.

1.4 Определение скорости и ускорения точки при координатном способе задания движения

при координатном способе задания движения:

 (а)

с другой стороны:

 (б)

Сравнивая (а) и (б) находим:

;     ;      (1.8)

т.е. проекция вектора скорости на оси координат равны первым производным по времени от соответствующих координат.

Величина скорости:

 (1.9)

направление вектора скорости определяется с помощью направляющих косинусов, т.е. косинусов углов между вектором скорости и осями координат (рис. 1.6).



 
 






 (1.10)



Сравнивая (в), (г), (д) находим:

 (1.11)

Проекция ускорения равны первым производным по времени от соответствующих проекций скорости или вторым производным по времени от соответствующих координат.

Величина ускорения:

 (1.12)

Направляющие косинусы:

; (1.13)

1.5 Определение скорости и ускорения точки при естественном задании движения

Пусть за время  точка переместилась из положения М в положение М1, совершив перемещение (рис. 1.17).

 
 





величина скорости точки:

 (1.14)

Направлена скорость по касательной к траектории:

Найдем ускорение точки.

Пусть в положении М точка имеет скорость (рис. 1.8).

Полное ускорение точки будет:

          

Обозначим угол между касательными через  (угол смежности). Спроецируем вектор ускорения  на касательную и нормам п.


 
 






Найдем эти пределы, учитывая, что при одновременно и  и .


где ρ – радиус кривизны траектории в данной точке.

Подставив эти значения в ап получим:


Т.о. величины касательного, нормального и полного ускорений определяется формулами:

 (1.17)

 

 (1.16)

 

 (1.15)

 

Касательное ускорение направлено по касательной к траектории (в сторону скорости при ускоренном движении и противоположно скорости – при замедленном) и характеризует изменение величины скорости.

Нормальное ускорение направлено по нормам к траектории к центру кривизны и характеризует изменение направления скорости.

1.6 Частные случаи движения точки

По виду траектории движение делится на прямолинейное и криволинейное. При прямолинейном движении ап = 0, т.к. ρ = ∞.

По изменению величины скорости движения делится на равномерные и неравномерные.

Движение называется равномерным, если величина скорости постоянна (V=const).

Закон равномерного движения:

S=S0+Vt (1.18)

Движение называется равномерным, если величина касательного ускорения постоянна.


Т.о. равномерное движение описывается двумя формулами:

 (1.19)

Нормальное ускорение направлено от данной точки к оси вращения

Тема 2 Простейшие движения тела

К простейшим движениям твердого тела относятся поступательное движение и вращательное движение вокруг неподвижной оси.

2.1 Поступательное движение твердого тела

Поступательным называется такое движение тела, при котором любой отрезок прямой проведенной в теле перемещается параллельно самому себе.

Это самое простое движение тела.

Оно описывается одной теоремой:

При поступательном движении тела все его точки описывают одинаковые, при наложении совпадающие траектории, и имеют одинаковые скорости и одинаковые ускорения.

Доказательство:

Проведем в теле произвольный отрезок АВ. При движении тела он остается параллельным самому себе (рис. 2.1). траектория точки А на величину АВ, т.е. они одинаковые.

 
 




Проведем из неподвижного центра О радиусы-векторы точек А и В (), а также вектор  из точки А в точку В.

Очевидно, что

Продифференцируем это векторное равенство по времени, учитывая, что .

;       но , значит

 (2.1)

дифференцируя (2.1) по времени: , получаем:

 (2.2)

Так как точки А и В взяты произвольно, то все выводы справедливы для всех точек тела.

Следовательно, при поступательном движении тела его можно считать точкой и пользоваться формулами кинематики точки.

2.2 Вращение тела вокруг неподвижной оси

Проведем через ось вращения две полуплоскости: неподвижную І и подвижную II, жестко связанную с телом и вращающуюся вместе с ним (рис. 2.2).

Положением тела будет однозначно определяться углом φ между этими полуплоскостями. Угол φ называется углом поворота. Измеряется он в радианах. Положительное направление φ – против часовой стрелки, если смотреть навстречу оси Z.

Зависимость

φ = φ(t) (2.3)

называется уравнением вращательного движения.

 
 








Быстрота вращения характеризуется угловой скоростью ω. Средняя угловая скорость определяется как отношения приращения угла поворота ∆φ к промежутку времени ∆t, за который оно произошло.


Угловая скорость в данный момент времени:

 (2.3)

Вектор угловой скорости  направлен по оси вращения в ту сторону, чтобы, глядя навстречу ему, мы видели вращение происходящей против часовой стрелки. Изменяется ω в радиан/сек. На производстве угловую скорость измеряют в об/мин. В этом случае она обозначается буквой «п».

Формула перехода:

 (2.4)

Изменение угловой скорости характеризуется угловым ускорением ε, которая определяется как первая производная от угловой скорости или вторая производная от угла поворота по времени:

 (2.5)

Направлен вектор  также по оси вращения в сторону  при ускоренном и противоположном  при замедленном вращении. Единица измерения – 1Рад/с2.

2.3 Равномерное и равнопеременное вращение

Вращение называется равномерным, если угловая скорость постоянна, т.е. ω = const.

Закон равномерного вращения:

φ=φ0t  (2.6)

Вращение называется равнопеременным, если угловое ускорение постоянно, т.е. ε = const.

Но . Разделяя переменные и интеграции  находим, что

 (2.7)

Подставив сюда  и еще раз интегрируя , получим уравнение переменного вращения:

 (2.8)

2.4 Скорости и ускорение точек вращающегося тела

пусть за время dt тело повернулось на угол , а точка М, находящаяся на расстоянии R от оси вращения, получила перемещение dS=ч* (рис. 2.3).

 Тогда скорость точки

 (2.9)

Направлен вектор скорости по касательной к траекториям, т.е. по касательной к окружности радиуса R, центр которой лежит на оси вращения, а ее плоскость перпендикулярна оси вращения.

Найдем нормальное и касательное ускорение точки:

 
 



(2.10)

 
 

Нормальное ускорение направлено от данной точки к оси вращения.

Касательное ускорение направлено по касательной к округлости, которую описывает точка и совпадает с направлением скорости при ускоренном вращении, а при немедленном – противоположно скорости.

Рассмотрим векторное произведение  (рис. 2.4). Его модуль , а направление совпадает с направлением скорости. Из этого делаем вывод, что вектор скорости:

 (2.11)

взяв от этого выражения производную по времени, получим:


Первое произведение по величине и направлению совпадает с касательным, а вторая – с нормальным ускорением.

Таким образом, касательная и нормальная составляющие вектора полного ускорения при вращательном движении определяется формулами:

 (2.12)

 
 









Отметим, что радиус-вектор  точки М можно проводить из любой точки О1, лежащей на оси вращения (все точки оси вращения неподвижны) и что этот вектор постоянный по модулю (у него меняется только направление).

2.5 Простейшие передаточные механизмы

Передаточными называют механизмы, служащие для передачи вращения с одного вала на другой. К простейшим из них относятся: зубчатые, ременные, цепные и фрикционные. Схематическое изображение зубчатых и фрикционных механизмов показано на рис. 2.5а, а ременных и цепных на рис. 2.5.б.

Найдем скорость точки а:  на колесе І и  на колесе ІІ. Так как проскальзывание отсутствует, то .

Отсюда:

 (2.13)

т.е. угловые скорости обратно пропорциональны радиусом колес. Величина i1-2 называется передаточным отношением.

У зубчатых и цепных передач – передаточное отношение точное, у ременных и фрикционных – может быть проскальзывание. Ременные и цепные передачи позволяют передавать вращение на большие расстояния, чем зубчатые и фрикционные. С устройством передаточных механизмов, их изготовлением, расчетами и эксплуатацией вы познакомитесь в курсах «Теория механизмов и машин» и «Детали машин».

Тема 3 Сложное движение точки

3.1 Основные определения

До сих пор мы рассматриваем движение точки в одной, неподвижной системе отсчета. Однако, часто встречаются случаи, когда точка движется по определенному закону в некоторой системе отсчета, которая, в свою очередь, перемещается относительно неподвижной системы отсчета. Такое движение точки называется сложным. Введем основные определения сложного движения точки.

Движение точки в подвижной системе отсчета называется относительным. Скорость и ускорение точки в этом движении называются относительными и обозначаются:  (или ).

Движение точки вместе с подвижной системой называется переносным. Скорость и ускорение той точки М/ подвижной системы, в которой в данный момент находится движущаяся точка М, являются для данной точки переносной скоростью и переносным ускорением и обозначаются  (или ).

Движение точки относительно неподвижной системы отсчета называется абсолютным. Скорость и ускорение точки в этом движении называются абсолютными и обозначаются  (или ).

Пусть точка М движется в подвижной системе отсчета охуz. Ее координаты х, у, z являются функциями времени, а координаты х/, у/, z/ точки М/ подвижной системы, в которой в данный момент находится движущая точка М, являются константами. Но в любой момент времени

х = х/,         у = у/,                   z = z/ (3.1)

Введем в рассмотрение радиусы-векторы, определяющие положение точек М и М/ в подвижной и неподвижной системах отсчета (рис. 3.1).


      - радиус-вектор, определяющий положение начала подвижной системы охуz в неподвижной системе отсчета о1х1у1z1.

=- радиус-вектор, определяющий положение движущейся точки М в подвижной системе отсчета. Он описывает относительное движение точки.

- радиус-вектор, определяющий положение точки М/ подвижной системы в этой же системе.

- радиус-вектор, определяющий положение точки М/ подвижной системы в неподвижной системе отсчета. Он описывает переносное движение точки.


3.2 Теоремы о схождении скоростей и ускорений

Скорости и ускорения точки в различных движениях будем определять как первую и вторую производные по времени от соответствующих радиусов-векторов.

1.   Относительную скорость и относительное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая единичные орты  константами (в подвижной системе – они постоянны).

(3.3)

 

(3.2)

 

2.   Переносную скорость и переносное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая координаты х/, у/, z/ константами, а единичные орты – переменными.


так как дифференцирование проведено, то мы можем воспользоваться равенствами (3.1), т.е. заменить х/ на х, у/ на у, z/ на z:

(3.5)

 

(3.4)

 

3.   Абсолютную скорость и абсолютное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая все величины переменными:


Таким образом доказана теорема сложения скоростей:

Абсолютная скорость равна геометрической сумме переносной и относительной скоростей.

 (3.6)

находим абсолютное ускорение:


где введено обозначение:

 (3.7)

Величина , определяемая равенством (3.7) называется поворотным ускорением или ускорением Кориолиса, по имени французского ученого, доказавшего теорему сложения ускорений:

Абсолютное ускорение точки равно геометрической сумме переносного, относительного и Кориолисов ускорений.

 (3.8)

3.3 Ускорение Кориолиса, его величина направление и физический смысл

Рассмотрим ускорение Кориолиса, определяемое равенством (3.7). Если подвижная система движется относительно неподвижной поступательно (т.е. переносное движение поступательное), то единичные орты будут постоянны и по модулю и по направлению и их производные по времени будут равны нулю, следовательно и ускорение Кориолиса равно нулю.

Теорема о сложении ускорений при поступательном переносном движении будет выражаться равенством:

 (3.9)

Рассмотрим переносное вращательное движение. Пусть подвижная система вращается вокруг оси О3 с угловой скоростью (рис. 3.2). единичные орты  можно рассматривать как радиус-векторы точек А, В и С соответственно. А производные по времени от радиус-векторов точек дают скорости точек.

 
 





Следовательно:

;      ;       (а)

с другой стороны, скорости точек А, В и С мы можем найти как во вращательном движении по формуле (2.11):

;     ;    (б)

сравнивая (а) и (б) находим, что:

;   ;   ; (в)

Подставим эти значения в формулу (3.7)


Таким образом ускорение Кориолиса равно удвоенному векторному произведению вектора угловой скорости переносного движения на вектор относительной скорости.

 (3.10)

Его величина

 (3.11)

 
 







В соответствии с правилом векторного произведения ускорения Кориолиса направлено перпендикулярно плоскости, в которой лежат векторы  и , в ту сторону, чтобы, глядя навстречу ему, мы видим поворот вектора  к вектору  на меньший угол происходящим против часовой стрелки.

Другое правило: чтобы найти направление ускорения Кориолиса, надо вектор спроецировать на плоскость, перпендикулярно оси переносного вращения, и полученную проекцию повернуть на 90о в сторону вращения. Эти и будет направление вектора .

Физический смысл ускорения Кориолиса выясним на таком примере. Пусть круглая платформа вращается с постоянной угловой скоростью , а по радиусу платформы двигается точка М с постоянной относительной скоростью Vч (рис. 3.3). В некоторый момент точка занимает положение Мо, а через промежуток времени  положение М1. При этом произошло изменение относительной скорости за счет переносного движения (изменилось направление вектора ) и изменение переносной скорости за счет относительного движения (изменилась величина  в результате удаления точки от оси вращения). Эти два изменения и характеризуются ускорением Кориолиса.

Таким образом, ускорение Кориолиса характеризует изменение относительной скорости в результате переносного движения и изменение переносной скорости в результате относительного движения.

В общем случае движения формулы (3.8) удобнее использовать в таком виде:

 (3.12)

Задача кинематики плоского движения твердого тела - найти характеристики движения самого тела и отдельных его точек. В данном задании к таким характеристикам относятся векторы угловой скорости и углового ускорения тела.

Рис. 1

Основные формулы кинематики плоского движения твердого тела - векторные формулы, связывающие соответственно скорости и ускорения двух произвольных точек плоской фигуры, например, точек А и В (рис. 1)

B = A + BA = A +  ´ ; (1)

B = A +  +  = A +  × ( ´ ) +  × ; (2)

где , , - векторы угловой скорости и углового ускорения вращения плоской фигуры вокруг любой оси, например Az' перпендикулярной плоскости движения Oxy относительно системы координат Ax'y'z', оси которой параллельны осям неподвижной системы координат Оxyz.На рис.1 оси Оz. и Аz' не изображены, так как считается, что они перпендикулярны к плоскости рисунка и направлены на наблюдателя, а плоскости Охy и Аx'y' совпадают с плоскостью рисунка.

Левые части выражений

BA =  ´ ;  =  × ( ´ ) =  × BA;  =  × ;

являются соответственно векторами скорости, нормального и касательного ускорения точки В относительно системы координат Ax'y'z' при вращении отрезка АВ в плоскости рисунка вокруг точки A, называемой в таком случае полюсом, с угловой скоростью  и угловым ускорением . Индексы n и t, в выражениях  и указывают, что эти векторы направлены соответственно по внутренней нормали и касательной в точке B к окружности радиуса r = AB с центром в точке А. Модули упомянутых векторов находятся по формулам

½BA½ =  ´ AB; ½½ =  =  ´ AB; ½½ =  ´ AB; (3)

Векторы BA, ,  лежат в плоскости движения плоской фигуры тела, причем ненулевые векторы BA,  перпендикулярны отрезку AB, а ненулевой вектор  направлен от точки В к точке А . Таким образом, для этих векторов всегда известны линии действия.

Поскольку модуль ускорения может быть вычислен по формуле (3) через угловую скорость тела , обычно известную к этапу нахождения ускорений, целесообразно в формуле (2) вектор  записывать вслед за известным вектором А, т.е. перед вектором .

Векторы  и  параллельны оси Оz и поэтому полностью определяются своими проекциями на эту ось

Модуль проекции равен модулю вектора ; , а знак проекции указывает на направление вектора. Например, если проекции векторов положительны (, то векторы  направлены так же, как и , или ось Oz. Таким образом, при плоском движении тела задача нахождения векторов  сводится к задаче отыскания их проекций на ось Oz или Az'.

Если  (рад) - угол между осью Ax' (Ох) и вектором  (рис. 1) и за положительное направление отсчета угла  для выбранной системы координат принято направление против хода часовой стрелки, то

 рад/с;  = = рад/с. (4)

О направлении векторов  и  судят по круговым стрелкам  и  согласно правилу: "круговая стрелка, направленная против хода стрелки часов, соответствует вектору, направленному так же, как ось Oz".

Из формул, использующих понятие МЦС (точка Р) на рис.2,

; , (5)

следует, что в данный момент времени распределение скоростей точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Рz с угловой скоростью .


Подпись: Рис. 2

Подпись: Рис. 3

Если отсчитывать угол 90 от направления вектора скорости точки A к направлению АР от этой точки до МЦС, то направление отсчета угла совпадает с направлением круговой стрелки . Этот факт можно использовать для определения направления вектора .

Из формул, использующих понятие МЦУ (точка Q на рис. 3),

; ; (6)

,

следует, что в данный момент времени распределение ускорений точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Qz с угловой скоростью  и угловым ускорением .

Угол  отсчитывается от вектора ускорения какой-либо точки в направлении круговой стрелки . При отыскании положения МЦУ по ускорениям двух точек, например по  и , под углом  к соответствующим ускорениям проводят лучи AQ и BQ. Точка пересечения лучей (точка Q) является МЦУ плоской фигуры в данный момент времени.

Направления векторов  и  помимо формул (4) могут быть найдены из отдельных векторных формул

; ; . (7)

Рис. 4

Чтобы избежать анализа расположения трех взаимно перпендикулярных векторов формул (7) при известных , ,  направления  и  находят аналогично случаю вращательного движения тела вокруг неподвижной оси (рис. 4).

Рис. 5

Кинематика плоского движения

катка радиуса R. при отсутствии скольжения по направляющей (в общем случае криволинейной), имеет некоторые особенности вследствие того, что мгновенный центр скоростей катка (точка Р ) совпадает с точкой окружности касающейся направляющей (рис. 5). Поэтому при движении катка расстояние от его центра (точки А) до МЦС является неизменным во времени и равным R.

AP(t) = const = R (8)

Свойство неизменности расстояния АР позволяет установить дополнительные соотношения, удобные для расчетов кинематических характеристик катка. Представим вектор скорости точки А с помощью:

а) формулы естественного способа задания движения точки

, где  - единичный вектор естественного трехгранника, касательный в точке A к кривой ее движения; SA - криволинейная координата точки;

б) формулы (7) плоского движения тела

,

;

- орт оси Оz, перпендикулярной плоскости движения катка Qxy; j - угол, задающий направление какого-либо отрезка плоской фигуры катка. Ввиду произвольности выбора такого отрезка, обычно собственно отрезок, не указывают на рисунках, а изображают лишь круговую стрелку положительного направления отсчета угла j, называя его углом поворота катка.

Приравнивая правые части последних формул, имеем


.

Поскольку вектoр  коллинеарен результату векторного произведения

 (^, ^), то

.

Откуда, используя свойство (8), получим формулы

, или , (9)

справедливые для любого момента времени t.

В правой части формулы (9) берется знак "+", если при мысленном увеличении угла поворота катка j в направлении против хода стрелки часов наблюдается возрастание координаты SА центра движущегося катка в положительном направлении ее отсчета, иначе берется знак "-".

Так, например, для случая отсчетов SА и j, изображенном на рис.5, в формуле (9) необходимо брать знак "-".

Дифференцируя и интегрируя по времени соотношения (9), придем к выражениям

, или , (10),

а также ,

где С - некоторая константа, значение которой зависит от выбора начал отсчетов SА и j. Обычно принимают С=0, так как считают, что когда SА=0, j также равно нулю. Из произведения соответствующих частей формул (9), (10),

 (11)

следует, что если векторы ,  сонаправлены, то сонаправлены и векторы , .

Таким образом, с помощью формул (1-4), (8-9) могут быть найдены характеристики векторов скоростей и ускорений точек, векторов угловых скоростей и ускорений звеньев механизма, а с помощью формул (5, 6), (11) осуществлена их проверка.

Нахождение кинематических характеристик движения (, , , ) при помощи векторных формул (1), (2) рекомендуется проводить следующим образом:

1) написать формулу (1) или (2) применительно к конкретным точкам рассматриваемого звена механизма. При этом в качестве полюса следует взять точку с известными кинематическими характеристиками движения;

2) установить, известны или неизвестны на данном этапе решения две независимые характеристики {проекции на две оси или модуль и направляющий угол) для каждого вектора, входящего в уравнение (1) или (2). Найти значения тех независимых характеристик векторов, которые могут быть установлены из условий движения звена без решения рассматриваемого векторного уравнения;

3)      решить векторное уравнение графоаналитическим или аналитическим методом (метод проекций).


Не нашел материал для своей работы?
Поможем написать качественную работу
Без плагиата!