Криволинейный интеграл первого и второго рода

  • Вид работы:
    Контрольная работа
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    258,59 kb
  • Опубликовано:
    2011-02-19
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Криволинейный интеграл первого и второго рода

Криволинейный интеграл первого рода

 

Криволинейный интеграл второго рода

 

1. Задача приводящая к понятию криволинейного интеграла.

Определение криволинейного интеграла по координатам.

2. Свойства криволинейного интеграла (рис. 1).

3. Вычисления

а)

б)

Рис. 1

Займемся обобщением понятия определенного интеграла на случай  когда путь интегрирования – кривая -кривая , , . Т/н. А-работу силы  при перемещении точки  от  к

1. Разобьем на n частей :

Обозначим  вектор- хорда дуге.

Пусть  предположим, что на  тогда

Работа  вдоль дуги  вычисляется как скалярное произведение векторов  и


Пусть


Тогда:

Работа

Если , то этот предел примем за работу А силы  при движении точки  по кривой  от точки  до точки


,-не числа, а точки концы линии .

1.   Свойства:

10  определяется

а) подынтегральным выражением

б) формой кривой интегрирования.

в) указанием направления интегрирования (рис. 2).

  

Рис. 2


-можно рассматривать как интеграл от векторной функции

Тогда  - если -замкнутая то -называют циркуляцией вектора  по контуру .

30

40  не зависит от того какую точку  взять за начало

Вычисление криволинейного интеграла

Криволинейные интегралы вычисляются сведением их к обыкновенным интегралам по отрезку прямой (рис. 3).

Рис. 3

-гладкая кривая.

1.   Если -непрерывны, -непрерывные.

-непрерывны по , то

Пределы А и В не зависят ни от способа деления  на , ни от вектора


Следовательно: .


2. В случае:  

 

1.   Формула Грина.

2.   Условие независимости криволинейного интеграла от пути интегрирования.

3.   Полный дифференциал.

Связь между определенным и криволинейным интегралами.

Пусть дано область D, замкнутая, ограниченная линией  (рис. 4).

интеграл криволинейный грин формула

 

Рис. 4

 непрерывны на

 - определена и непрерывна в замкнутой области D.


Аналогично

 -Формула Грина.

В частности: вычисление площадей фигур с помощью двойного интеграла.

 

 

 


Пример.

 


Условие независимости криволинейного интеграла от пути интегрирования

 

Рис. 5

- непрерывные частные производные в  (рис. 5).

Каковы условия независимости криволинейного интеграла от пути интегрирования?

Теорема: -непрерывны в области , тогда для того, чтобы

 в  (рис. 6)

Рис. 6

 

Пусть

 

Обратно  

Т.д.

Пусть  из непрерывности  и

-окрестность точки  такая что  в

 предположение неверно. ч.т.д.

Замечание.

 

Определение. Функция -градиент которой есть вектор силы  называется потенциалом вектора .

Тогда

Вывод: Криволинейный интеграл от полного дифференциала не зависит от формы пути интегрирования.

Литература

1. Ильин В.А., Садовничий В.А., Сендов Б.Х. Математический анализ. 1-2 том. Изд. МГУ, 1989 г.

2. Виноградова И.А., Олексич С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. Часть 1,2 Изд. МГУ. Серия классический университетский учебник 250 летию МГУ 2005 г.

3. Шилов Г.Е. Математический анализ. Часть 1,2. Москва. Изд. Лань. 2002 г. – 880 с.

4. Лунгу К.Н. Сборник задач по математике. Часть 1,2. Москва. Айрис пресс 2005 г.

 

Похожие работы на - Криволинейный интеграл первого и второго рода

 

Не нашел материал для своей работы?
Поможем написать качественную работу
Без плагиата!