Законы распределения случайных величин. Доверительный интервал

  • Вид работы:
    Контрольная работа
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    58,74 kb
  • Опубликовано:
    2010-07-24
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Законы распределения случайных величин. Доверительный интервал












Контрольная работа по дисциплине:

Теория вероятностей и математическая статистика

Законы распределения случайных величин. Доверительный интервал

Задача 1

 

Вероятность появления события в каждом из независимых испытаний равна 0,8. Найти вероятность того, что в 100 испытаниях событие появится не менее 70 и не более 80 раз.

Решение:

,

где  - функция Лапласа, значения которой находятся из таблиц.

;

.

Здесь: .

.

 

Ответ: 0,49.

Задача 2

 

Среднее число вызовов, поступающих на АТС на 1 минуту, равно двум. Найти вероятность того, что за 4 минуты поступит: а) 3 вызова; б) не менее 3-х вызовов; в) менее 3-х вызовов. Предполагается, что поток вызовов – простейший.

а) Вероятность события «за 4 минуты поступило 3 вызова равна:

,

 - среднее число вызовов в минуту; ;

t – время, за которое может поступить 3 вызова; t=4 мин.;

k – число возможных вызовов за время t; k=3.

.

 - находим из таблицы значений функции распределения Пуассона для k=3 и a==8.

в) События «поступило менее 3-х вызовов» и «поступило не менее 3-х вызовов» являются противоположными. Поэтому найдем сначала вероятность первого события:

.

Здесь: вероятности  находятся из таблиц распределения Пуассона соответственно для значений k=0, k=1, k=2 и для a==8.

б) Данное событие является противоположным к событию, описанному в пункте в) (выше), поэтому: .

Ответ: а) 0,03; б) 0,99; в) 0,01.

 

Задание 3

 

Случайная величина Х задана функцией распределения (интегральной функцией) f(x). Требуется: а) найти дифференциальную функцию f¢(x) (плотность вероятности); б) найти математическое ожидание и дисперсию Х; в) построить графики функций f(x) и f¢(x).

 

Решение:

а)  - плотность вероятности.

б) Математическое ожидание:

.



в) График функции f(x):


х

1

2

f(х)

1


; ; .

График функции


х

1

2

f¢(х)

1


Задание 4

 

Найти доверительный интервал для оценки математического ожидания Q нормального распределения с надежностью , зная выборочную среднюю , объем выборки n и среднее квадратическое отклонение s.

; ; n=225.

Решение:

.

Здесь:  находится из таблицы распределения Стьюдента для n=225 и .

.

;

.

Ответ: (73,12; 77,04).

Похожие работы на - Законы распределения случайных величин. Доверительный интервал

 

Не нашел материал для своей работы?
Поможем написать качественную работу
Без плагиата!