Теория вероятностей и математическая статистика

  • Вид работы:
    Контрольная работа
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    260,04 kb
  • Опубликовано:
    2008-12-09
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Теория вероятностей и математическая статистика

Задача 4.

Уравнение линии регрессии:

a) получить 50 случайных независимых значений {x1,…,x50} случайной величины X, равномерно распределенной на интервале (0, 9); получить 50 случайных независимых значений {y1,…,y50} случайной величины Y следующим образом: yi – случайное число, распределенное по показательному закону с параметром

b) найти уравнение прямой линии регрессии Y на X по этим данным;

c) проверить с помощью критерия «хи квадрат» гипотезу о нормальном распределении с нулевым математическим ожиданием отклонений имеющихся данных от прямой регрессии при уровне значимости 0.05; при этом рассмотреть группированную выборку, разделив отрезок [-Dmax, Dmax] на 5 равных частей, где Dmax – наибольшее по абсолютной величине отклонение yi от линии регрессии.

Решение:

Получим 50 случайных независимых значений {x1,…,x50} случайной величины X, равномерно распределенной на интервале (0, 9):

8.83174196071923

6.99053263384849

8.93890746776015

0.385410904884338

5.75393992289901

4.51090870331973

0.00656201597303152

7.97929550148547

6.6076143393293

4.54793028719723

1.40597840119153

2.18026433419436

5.0019520400092

5.61958408355713

0.148369995877147

4.25108801946044

4.77254802547395

1.53819094598293

6.14594876859337

0.812219920568168

6.2368449093774

1.69562757108361

0.777272606268525

2.94200689997524

7.07131071947515

2.973582518287

8.08092284202576

2.89726528152823

8.8169469544664

3.27939590346068

0.570096284151077

8.46246168483049

2.00763375777751

2.70446146745235

8.67470343410969

1.92118153441697

1.92350933980197

1.31150823365897

1.80795181263238

3.65427995938808

8.97048242390156

2.54362053237855

0.0568648930639029

6.36279229167849

1.68422971665859

4.25911642424762

2.50030734948814

4.91532963048667

7.35895295999944

4.39228433836252

Получим 50 случайных независимых значений {y1,…,y50} случайной величины Y следующим образом: yi – случайное число, распределенное по показательному закону с параметром :

24.9323592452182

15.7441606069719

15.5028112434691

2.87790855039727

4.16156795216443

0.190460347139702

0.252207251176988

5.55884492608762

11.5417165759534

11.8189116910915

9.57191092954621

6.48268208064067

11.9201379351172

0.0563900402236241

6.07239051882238

10.8341890845962

2.77373256888689

1.4735808529829

0.683544240471081

1.536352690789

0.100495382422226

6.48630115206778

1.01940005703768

6.79791391486788

2.34472037157293

2.06912254815368

3.42524848981833

9.45107565557296

3.18848770214796

1.69800713475763

2.42887690987151

6.18175839336735

4.85432860734921

3.12088295311468

0.14473630724364

0.312712437424258

1.16492882917332

2.95306149294792

6.38190212865322

0.293019110223049

0.664514453422601

3.47608211592645

20.3599120342622

1.45318365215952

9.23209976014301

0.965294785502523

6.29747102157127

6.46689933291391

3.14474865192493

Найдем уравнение прямой линии регрессии Y на X по этим данным по формулам

 


Уравнение прямой линии регрессии Y на X:


Получены следующие значения отклонений имеющихся данных от прямой регрессии:

15.1803992483777

7.69319511536507

5.65184678474214

0.929060620003659

-2.74697588437076

-5.56971364166513

-1.34664251825399

-3.40558552590376

3.84450875080244

6.024535447371

6.68021544884769

2.87566537149934

4.45916201865442

5.13571824955786

-1.67346851299683

0.55225091890577

4.83230056456327

-0.240106987952807

-5.79711892247662

-1.65960963866345

-5.81832115202078

-3.05879142493402

4.17543322148284

-3.29134973659658

-1.99520044159931

-6.98919595084991

-0.844166923187427

-0.287216028830924

-1.43395768887411

-0.421461708068378

-6.98192485416478

2.73422581111747

0.763034293093572

-6.48599757504491

-3.22292770452086

-3.0571021088348

-1.63949073262982

-0.309995654309725

1.41312147312541

-9.58711575629829

-3.27818755099385

1.8307602174006

12.8888821627727

-1.69557328905632

3.70454314781532

-2.93739249325208

0.163674237751803

-1.9244299300759

-2.50583465100064

Проверим с помощью критерия «хи квадрат» гипотезу о нормальном распределении с нулевым математическим ожиданием отклонений имеющихся данных от прямой регрессии при уровне значимости 0.05:

Найдем наибольшее по абсолютной величине отклонение yi от линии регрессии:

 

Рассмотрим группированную выборку, разделив отрезок [-Dmax, Dmax] на 5 равных частей:

zi

zi+1

ni

-15.1803992483777

-9.10823954902661

1

-9.10823954902661

-3.03607984967554

12

-3.03607984967554

3.03607984967554

25

3.03607984967554

9.10823954902662

10

9.10823954902662

15.1803992483777

2

Вычислим шаг:


Вычислим выборочное среднее по формуле


Вычислим выборочное среднее квадратическое отклонение по формуле


Вычислим теоретические вероятности попадания в интервалы (zi, zi+1) по формуле

 

Вычислим теоретические частоты по формуле

 

zi

zi+1

ni

Pi

fi

(ni - fi)2 / fi

-15.1803992

-9.10823954

0.02546995

0.02546995

0.02546995

-9.10823954

-3.03607984

12

0.23264461

0.23264461

0.23264461

-3.03607984

3.036079849

25

0.48256076

0.48256076

0.48256076

3.036079849

9.108239549

10

0.23264461

0.23264461

0.23264461

9.108239549

15.18039924

2

0.02546995

0.02546995

0.02546995


По таблице критических точек распределения «хи квадрат», по заданному уровню значимости 0.05 и числу степеней свободы 3 находим критическую точку:


 

Гипотезу о нормальном распределении с нулевым математическим ожиданием отклонений имеющихся данных от прямой регрессии при уровне значимости 0.05 не отвергаем.


Не нашел материал для своей работы?
Поможем написать качественную работу
Без плагиата!