Формовка пластмасс в ортопедической стоматологии

  • Вид работы:
    Реферат
  • Предмет:
    Медицина, физкультура, здравоохранение
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    18,42 Кб
  • Опубликовано:
    2015-07-07
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Формовка пластмасс в ортопедической стоматологии













Реферат на тему:

«Формовка пластмасс в ортопедической стоматологии»

Введение

Формовка пластмасс является одним из лабораторных этапов изготовления съемного протеза. Пластмассы нашли наибольшее применение в ортопедической стоматологии, так же их применяют при восстановительных операциях на лице, при лечении переломов челюстей, при лицевом протезировании <#"justify">жесткие (для базисов протезов и их реставрации)

мягкие (для боксерских шин или в качестве мягкой подкладки под жесткий базис)

)по температурному режиму полимеризации

холодного отверждения

горячего отверждения

)по наличию красителя

розовые

бесцветные

Пластмассы горячего отверждения состоят из порошка и жидкости, которые после смешивания и последующего нагревания переходят в твердое состояние.

Компоненты:

) порошок

шарики или гранулы полиметилметкрилата

иницитор - пероксид бензоила

пигменты\красители

замутнители - оксиды титана\цинка

пластификатор - дибутилфтолат

синтетические волокна - нейлон\акрил

) жидкость

мономер - метилметакрилат

ингибитор - гидрохинон

сшивающий агент - диметакриловый эфир этиленгликоля

Специфическая форма применения материала в виде системы порошок-жидкость обусловлена по крайней мере тремя причинами:

Возможностью переработки материала в тестообразной форме или применением технологии «теста»

Сведением к минимуму полимеризационной усадки

Снижением экзотермического эффекта, или уменьшением теплоты реакции.

Технология теста делает процесс изготовления протезов относительно простым. В кювету, содержащую постановку искусственных зубов в гипсе, пакуется тестообразная масса, затем кювета закрывается под давлением таким образом, чтобы излишки массы выдавливались. Способность тестообразной массы точно прилегать к модели и простое удаление излишков, придают особенную легкость в работе с акриловыми пластмассами холодного отверждения (на стадии теста) при изготовлении из них специальных и индивидуальных оттискных ложек. Гранулы легче растворяются в мономере, чем шарики, тем самым сокращается время для достижения тестообразного состояния материала.

Полимеризационная усадка снижается по сравнению с усадкой при полимеризации мономера, поскольку большая часть материала уже заполимеризована.

Реакция полимеризации высоко экзотермична, так как значительное количество энергии высвобождается при превращении связей С=С в -С-С-. Так как большая часть смеси уже находится в форме полимера, снижается потенциальная возможность перегрева материала. Поскольку максимальная температура полимеризации будет меньше, уменьшится также и термическая усадка материала.

Мономер относится к категории летучих и легко воспламеняющихся веществ, поэтому контейнер с ним следует держать в закрытом состоянии и в дали от источников открытого огня. Контейнером является флакон из темного стекла, которое продлевает срок хранения, предотвращая спонтанную полимеризацию под действием света. Гидрохинон таже продлевает срок хранения, мгновенно вступая в реакцию со свободными радикалами, которые могут спонтанно образоваться в жидкости, давая соединения устойчивых свободных радикалов, не способных инициировать полимеризацию.

Порошок полимера очень стабильный и имеет практически неограниченный срок хранения. Сшивающий агент вводят в состав для улучшения механических свойств. Он соединяется в некоторых местах с полимерной цепью полиметиалметакрилата и образует поперечную сшивку между этой и соседней цепью полимера за счет двух концевых двойных связей.

Химия пластмасс холодного отверждения идентична химии пластмасс горячего отверждения, за исключением того, что отверждение инициируется третичным амином, а не нагреванием.

Этот метод отверждения менее эффективен и дает полимер с более низкой молекулярной массой. Такое положение отрицательно сказывается на прочностных свойствах материала и повышает содержание остаточного мономера. Также хуже показатель цветостойкости.

Технология изготовления пластмассового базиса протеза

Технология пластмассового базиса протеза предопределяет реализацию физико-механических, химических и др. свойств пластмассы, заложенных в ее рецептуре.

С пластмассами, из которых идет создание базиса съемного протеза, работает преимущественно зубной техник в специально оборудованном производственном помещении зуботехнической лаборатории - полимеризационной комнате. Процессу производства пластмассового базиса предшествует ряд последовательных действий, выполняемых врачом-ортопедом и зубным техником.

Технология изготовления пластмассового базиса съемного протеза предполагает следующие обязательные манипуляции:

подготовку гипсовой модели с восковым базисом, искусственными зубами (и кламмерами) к гипсовке в кювету;

получение гипсовой пресс-формы;

удаление воскового базиса из гипсовой пресс-формы с последующим заполнением ее заранее приготовленной полимер-мономерной композицией базисной пластмассы;

проведение полимеризации базисной пластмассы и последующей механической обработки базиса протеза, шлифования и полирования.

На сегодня известны 2 основных варианта получения гипсовой пресс-формы, в которой проводится полимеризация базисной пластмассы - разъемная и неразъемная гипсовые пресс-формы.

Компрессионное прессование

Получение разъемной гипсовой пресс-формы следует отнести к классическому методу, при котором необходимо использовать 2 замешивания гипса с необходимым интервалом времени между ним. Таким образом, полученная гипсовая пресс-форма состоит из двух частей, что позволяет после удаления воскового базиса раскрыть кювету (гипсовую пресс-форму), провести визуальную оценку качества удаления воска и в последующем заполнение (формовку) заранее приготовленной полимер-мономерной композицией.

Для заполнения разъемной гипсовой пресс-формы кюветы тестообразной массой, массу помещают в одну из половинок кюветы, закрывают второй частью и под давлением в специальном прессе производят формовку. Такой метод замены воска на пластмассу получил в специальной литературе название компрессионного прессования. К принципиальным недостаткам данного метода следует отнести то, что в процессе формовки излишки полимер-мономерной композиции удаляются (выдавливаются) по линии разъема половинок кюветы, т. е. создаются предпосылки к увеличению толщины базиса протеза.

Степень этого увеличения равна толщине слоя пластмассы между половинками гипсовой пресс-формы. Кроме того, на эту же величину происходит вертикальное перемещение искусственных зубов относительно протетической плоскости (окклюзионная плоскость,формируемая при протезировании на прикусных валиках. Окклюзионная плоскость - воображаемая плоскость, проводящаяся двумя способами. При первом она проходит через середину перекрытия центральных резцов и середину перекрытия мезиальных бугорков первых (при их отсутствии - вторых) моляров. При втором варианте она проводится через вершины щечного бугорка второго верхнего премоляра и мезиального щечного бугорка первого верхнего моляраю).

Инжекционно-литьевое прессование

Получение неразъемной гипсовой пресс-формы требует применения специальной (нестандартной) кюветы. Для этого на гипсовой модели с восковым базисом и искусственными зубами создается литниково-питающая система из специальных сортов воска, а гипсовка в кювету проводится одним замешиванием гипса или силиконовой массы. После удаления воска такая пресс-форма не может быть визуально проверена на предмет полного и качественного удаления воска. Формовка полимер-мономерной композиции проводится при более жидкотекучем состоянии массы через систему литников под давлением, создаваемым специальным поршнем (принцип «шприца»). Такой метод замены воска на пластмассу получил название метода инжекционно-литьевого прессования.Поршень инжектора во время полимеризации находится под сжимающим действием пружины, поэтому из него в полость гипсовой пресс-формы через литник поступает дополнительное количество формовочной массы, компенсирующее полимеризационную усадку. При этом методе прессования (формовки) нет линейно-объемных вертикальных изменений базиса, которые имеют место при компрессионном прессовании, содержание остаточного мономера не превышает 0,2-0,5%, очень незначительные упругие внутренние напряжения, фактически исключено коробление базиса, который точно соответствует рельефу протезного ложа.

Тем не менее многие исследователи отмечают следующие недостатки данного метода: отсутствие визуального контроля полноты удаления воска из гипсовой пресс-формы, достаточно проблематичным является нанесение изоляции на стенки гипсовой пресс-формы, что проявляется или в недостаточно прочном химическом соединении искусственных зубов и пластмассы базиса, или в искажении рельефа базиса. Следует помнить, что гипс, обладая пористой структурой, не препятствует проникновению мономера в его толщу. Если поверхность гипса при производстве протеза не изолировать от набухшей пластмассы, то часть мономера внедряется в поверхностный слой гипса и там полимеризуется. Механическое удаление этого слоя с внутренней поверхности базиса протеза ведет к искажению его рельефа, ухудшает фиксацию протеза и адаптацию к нему. Грубая шероховатость в виде пор различной величины, бугров, шипов, острых гребней, неровностей часто встречается на внутренней поверхности пластиночных протезов.

Приготовление формовочной массы

Для приготовления формовочной массы проводят замешивание, используя для этого полимер (порошок) и мономер (жидкость) того или иного базисного материала. Свойства полимер-мономерной композиции пластмасс горячей полимеризации зависят от размера и однородности гранул. Оптимальный размер гранул обеспечивает высокие физико-механические свойства полимера.

Усадка мономера в процессе полимеризации равна 20-21%, а усадка полимер-мономерной композиции составляет 6% и зависит от соотношения мономера и полимера. Оптимальным является соотношение мономера и полимера равное 1:3 по объему или 1:2 по массе. Смешивание мономера с полимером проводят в сосуде с крышкой. При этом в мономер насыпают отмеренное количество порошка и сразу же перемешивают (нормативный расход пластмассы для базиса съемного протеза составляет 1 г на 1 искусственный зуб). Сосуд с массой накрывают крышкой и оставляют для набухания на 15-30 мин (в зависимости от температуры окружающей среды). В течение этого времени консистенция массы изменяется от пескообразной до тестообразной. При получении мономер-полимерной массы различают следующие стадии ее созревания:

песочная (гранульная);

вязкая (тянущихся нитей);

тестообразная;

резиноподобная.

Песочная стадия появляется сразу после смешивания порошка с жидкостью и продолжается до 5 мин (в зависимости от температуры окружающей среды). Смесь на этой стадии не используется.

Стадия тянущихся нитей (вязкая) характеризуется липкостью массы, появлением тянущихся нитей, высокой текучестью и пластичностью.

Тестообразная стадия характеризуется утратой липкости массы, хорошей пластичностью и меньшей текучестью (по сравнению со стадией тянущихся нитей). В таком состоянии массу удобно формовать на гипсовых моделях (получение индивидуальных ложек, ортопедических аппаратов и др.).

Резиноподобная стадия характеризуется тем, что форма, приданная материалу на предшествующей стадии, почти полностью сохраняется, и материал не подлежит дальнейшей формовке. В начале в мономере растворяются внешние слои полимерных шариков (происходит набухание), и только спустя какое-то время мономер, проникая в глубь полимера, придает однородность массе. Мономер-полимерная смесь может затвердеть при комнатной температуре, но для этого потребуется значительное время.

Скорость набухания можно регулировать изменением температуры. При ее повышении процесс полимеризации ускоряется, при понижении - замедляется. Массу считают готовой к формовке, когда она теряет липкость.

Критериями полноты реакции полимеризации базисной пластмассы являются, как минимум, три основных фактора: давление, время, внешняя энергия (температура). Место приложения давления может быть различным.

В традиционном варианте давление является величиной постоянной и приложено ко всей гипсовой пресс-форме.

В других вариантах давление также является величиной относительно постоянной, но точкой приложения его является полимер-мономерная композиция. Так, например, с помощью комплекта SR-Ивокап фирмы «Ивоклар» (Лихтенштейн) возможна горячая полимеризация пластмассы с компенсацией усадки в условиях постоянного давления. Дозированный в капсулах полиметилметакрилат интенсивно замешивается и затем вводится под давлением (6 бар, т. е. 6 атм.) в специальную кювету. Полимеризация проводится в течение 35 мин в условиях постоянного давления. Благодаря системе SR-Ивокап возможна полимеризация пластмассы с полной компенсацией усадки и с предупреждением таким образом линейно-объемных изменений протезов. В специальных теплоизолирующих кюветах происходит процесс полимеризации сначала в нижних, а затем в верхних слоях пластмассы. Происходящая при этом усадка пластмассы компенсируется сразу поступающим под давлением на протяжении всего рабочего этапа материалом. На этом принципе основано инжекционно-литьевое прессование.

В качестве связующих звеньев (теплоносителей) между источником внешней энергии и полимер-мономерной композицией базисной пластмассы используется вода или воздух («полимеризация в условиях влажной среды», «полимеризация в условиях сухой среды»).

Полимеризация в условиях влажной среды, т. е. открытая или закрытая водяная баня (когда крышка емкости с водой позволяет создать в ней дополнительное давление), считается традиционным (классическим) способом полимеризации. Источником внешней энергии является газовая горелка или электроплита, на которую помещается емкость с водой и находящейся в ней гипсовой пресс-формой (кюветой) после формовки полимер-мономерной композиции.

При использовании традиционного метода твердения температурное воздействие на этот процесс осуществляется погружением кюветы, в которой находится масса, в емкость с водой при постепенном нагревании. Следует особо отметить тот факт, что температурные изменения воды при ее нагревании не соответствуют по времени таковым в отвердеваемой полимер-мономерной композиции. Для контроля полноты реакции полимеризации рекомендуется использовать следующие температурно-временные условия для воды (в литературе они носят название двухступенчатой полимеризации):

вода, в которую помещена гипсовая форма, нагревается от комнатной температуры до 65° С в течение 30 мин. Такая температура обеспечивает полимеризацию пластмассы под воздействием теплоты реакции;

затем в течение 30 мин температуру воды доводят до 100° С, выдерживают 1 ч и охлаждают форму на воздухе.

При повышении температуры в твердеющей массе до 60° С процесс полимеризации протекает плавно. При температуре выше 65° С остаточная перекись бензоила быстро расщепляется и скорость полимеризации мономера возрастает, а масса уменьшается в объеме.

По достижении температуры 65-68° С масса начинает увеличиваться в объеме вследствие термического расширения. Температурный коэффициент объемного расширения ПММА высок. Расширение в данном случае является основным фактором, компенсирующим усадку при полимеризации, и изделия получаются меньше восковой модели всего на 0,2-0,5% в линейных размерах. В дальнейшем подъем температуры и время полимеризации выдерживаются в зависимости от структуры и свойств мономера. Следует учесть, что повышение температуры приводит к увеличению молекулярной массы полимера, вызывает изменение физико-механических свойств (прочности и др.). Поэтому для достижения оптимальной молекулярной массы заключительную стадию полимеризации проводят при температуре воды 100° С.

Во время полимеризации пластмасса вступает в контакт с водой. которая, проникая в межмолекулярные пространства, вызывает специфические напряжения и изменения цвета пластмассы.

Полимеризация в условиях сухой среды - одно из основных направлений по совершенствованию технологии пластмассового базиса. В качестве источника внешней энергии может быть использована:

тепловая энергия специальных электрических приборов (сухожаровой шкаф);

микроволновая энергия;

энергия света;

энергия ультразвука.

Микроволновое облучение обладает преимуществом экономии времени перед быстрым отвердением в воде. Так, например, фирмой «ДжиСи» (Япония) выпускается базисная пластмасса Акрон М Си для отвердения в обычной микроволновой печи. Полимеризация всей массы происходит одновременно («изнутри наружу») в течение 3 мин, При этом уменьшается содержание остаточного мономера. Пластмасса выпускается в виде порошка-полимера разных цветов (розовый, бесцветный, розовый с прожилками «сосудов») и жидкости-мономера. Для полимеризации данной пластмассы необходима специальная кювета из материала, способного пропускать микроволновую энергию.

Тем не менее по вопросу использования микроволновой энергии нет единого мнения. Высказываются опасения в возникновении пористости в толстых слоях базиса, не обнаружена разница в физических свойствах, микроструктуре и степени сшивки при сравнении с полимеризацией в условиях влажной среды.

Новым направлением в совершенствовании базисных материалов является применение технологии процессов светоотверждения для получения базисов. Основой для базисов зубных протезов Триад (фирма «Дентсплай», США) является сшитая акриловая пластмасса, имеющая структуру взаимопроникающей полимерной сетки и способная отвердевать под действием голубого света с длиной волны 400-500 нм. Пластмасса дает усадку при полимеризации в среднем на 0,2%, которая компенсируется выдержкой в воде. Преимуществом материала Триад является отсутствие в нем остаточного мономера (он не содержит метилметакрилата).

Триад может быть использован в качестве подкладочного материала, при реставрации протезов. Все манипуляции с этим материалом при перебазировке съемного протеза могут проводиться в полости рта, включая начальное отверждение. Экономия времени при этом составляет 60%.

Пластмасса выпускается готовой к использованию в форме пластин толщиной 2 мм в защищенном от света пакете. По консистенции такой лист весьма жесткий, и его нужно предварительно прогреть. В размягченном состоянии его накладывают на подготовленный для реставрации базис протеза и вводят в полость рта. Здесь его предварительно отверждают с помощью источника света, а затем протез подвергают отвердению в специальном аппарате. Триад является материалом выбора среди традиционных быстротвердеющих пластмасс в США. Экспериментально-клинические исследования по использованию в качестве внешнего источника тепловой энергии ультразвукового воздействия на полимер-мономерную композицию базисной пластмассы не выявили существенного улучшения физико-механических показателей прочности базиса.

Проведение процесса полимеризации акриловых базисных материалов в сухожаровом шкафу вместо традиционной водяной бани позволяет получить более однородный материал без пористости и шероховатости поверхности.

Результаты исследований показали, что при полимеризации в сухой среде общее число пор в шлифах базисов протезов, полученных методом компрессионного прессования, в 6 раз меньше, а у поверхности, прилегающей к слизистой оболочке, в 11 раз меньше по сравнению с образцами, полимеризация которых проводилась в кипящей воде (на водяной бане). В то же время изучение прочности на разрыв и изгиб образцов пластмассы АКР-15, полученных при полимеризации в сухой среде, определило, что прочность на разрыв увеличивается на 65%, при статическом изгибе - на 12%.

Наиболее успешным применение суховоздушной полимеризации оказалось при производстве мостовидных металлопластмассовых зубных протезов, а также ортодонтических аппаратов непосредственно на моделях челюстей.

Последствия нарушения режима полимеризации

Нарушение режима полимеризации приводит к дефектам готовых изделий (пузырьки, пористость, разводы, участки с повышенным внутренним напряжением), к растрескиванию, короблению и поломкам протеза.

Различают 3 вида пористости пластмасс: газовую, сжатия, гранулярную.

Газовая пористость обусловлена испарением мономера внутри полимеризующейся пластической массы. Она возникает при опускании кюветы с пластмассовым тестом в гипсовой пресс-форме в кипящую воду. Данный вид пористости может также возникать при нагревании формы с большим количеством массы вследствие сложности отвода из нее излишков тепла, развивающегося в результате экзотермичности процесса полимеризации.

К пористости сжатия приводит недостаточное давление или недостаток пластической массы, вследствие чего образуются пустоты. В отличие от газовой пористости она может возникнуть в любой области изделия (базиса протеза). На наш взгляд, правомернее называть ее пористостью от недостатка сжатия.

Гранулярная пористость возникает из-за дефицита мономера в тех участках, где он может улетучиваться. Такое явление наблюдается при набухании мономер-полимерной массы в открытом сосуде. Поверхностные слои при этом плохо структурируются, представляют собой конгломерат глыбок или гранул материала. В пластмассовых изделиях всегда имеются значительные внутренние остаточные напряжения, что приводит к растрескиванию и короблению. Они появляются в местах соприкосновения пластмассы с инородными материалами (фарфоровыми зубами, крампонами, металлическим каркасом, отростками кламмеров). Это является результатом различных коэффициентов линейного и объемного расширения пластмассы, фарфора, сплавов металлов.

Так, например, у акрилового базиса коэффициент термического расширения в 20 раз выше, чем у фарфоровых зубов. Это приводит к возникновению значительных локальных внутренних напряжении и появлению микротрещин в местах контакта пластмассы и фарфора.

В местах резкого перехода массивных участков пластмассового изделия в тонкие также возникают остаточные напряжения. Дело в том, что в толстых участках базиса усадка пластмассы имеет большую величину, чем в тонких. Кроме того, резкие перепады температуры при полимеризации вызывают или усиливают упругие деформации. Это, в частности, вызвано опережением затвердевания наружного слоя. Затем отверждение внутренних слоев вызывает уменьшение их объема, и они оказываются под воздействием растягивающих напряжений, поскольку наружные слои при этом уже приобрели жесткость.

Нарушение процессов полимеризации приводит также к тому, что мономер полностью не вступает в реакцию и часть его остается в свободном (остаточном) состоянии. Полимеризат всегда содержит остаточный мономер. Часть оставшегося в пластмассе мономера связана силами Ван-дер-Ваальса с макромолекулами (связанный мономер), а другая часть находится в свободном состоянии (свободный мономер).

Последний, перемещаясь к поверхности протеза, диффундирует в ротовую жидкость и растворяется в ней, вызывая при этом различные токсико-аллергические реакции организма. Базисные пластмассы при правильном режиме полимеризации содержат 0,2-0,5%, быстротвердеющие - 3-5% и более остаточного мономера.

Основные базисные пластмассы и их свойства

Этакрил (АКР-15) - базисный материал, являющийся сополимером метилметакрилата, этилметакрилата и метилакрилата, окрашенного в цвет, близкий к таковому слизистой оболочки полости рта. Обладает повышенной пластичностью в момент формования и достаточной эластичностью после полимеризации. Применяется для базисов съемных протезов, индивидуальных оттискных ложек, фантомных моделей челюстей.

Порошок (полимер) пластифицирован за счет внутренней пластификации путем введения в макромолекулу «метакрилата». Жидкость представлена сочетанием трех мономеров - метилметакрилата, этилметакрилата и метилакрилата в соотношении 89:8:2.

Полимеризация полимер-мономерной композиции осуществляется, как правило, на водяной бане.

Фторакс является пластмассой высокотемпературной полимеризации и относится к привитым сополимерам. Материал «привит» на основе акриловых смол из фторкаучуков и выгодно отличается от других акрилатов более высокими физико-механическими и химическими показателями.

Следует отметить и такие свойства, как медленное старение, незначительное водопоглощение, сохранение или незначительное изменение линейных размеров, отсутствие токсического действия на микрофлору полости рта, а также на организм в целом. Сюда нужно добавить меньший срок адаптации к протезам из Фторакса и хорошую имитацию им цвета слизистой оболочки полости рта.

Порошком Фторакса является мелкодисперсный, окрашенный в розовый цвет, суспензионный и привитой сополимер метилового эфира метакриловой кислоты и фторкаучука. Жидкостью - метиловый эфир метакриловой кислоты, содержащий сшивающий агент - диметакриловый эфир дифенилопропана.

Основным недостатком Фторакса является значительное содержание остаточного мономера ММА, что, по всей видимости, является причиной достаточно частых токсико-аллергических реакций на этот материал.

Акронил обладает повышенной ударопрочностью, невысокой водопоглощаемостью, хорошими технологическими показателями. Порошком является привитый к поливинилацеталю сополимер метилметакрилата, жидкостью - метилметакрилат, содержащий сшивающий агент. В состав Акронила введен ингибитор и стабилизатор.

Акрел является сополимером со «сшитыми» полимерными цепями, что придает ему повышенные физико-механические свойства. Образование сетчатой (сшитой) структуры полимера происходит в процессе полимеризации с помощью сшивающего агента, который введен в мономер и участвует в реакции только при полимеризации формовочной массы. Жидкость Акрела, кроме метилметакрилата, содержит сшивающий агент и ингибитор. Порошок состоит из мелкодисперсного полиметилметакрилата, пластифицированного дибутилфталатом.

Бакрил - высокопрочная акриловая пластмасса, имеющая по сравнению с другими полимерами большие устойчивость к растрескиванию, стиранию, ударную вязкость и высокую прочность на изгиб. Порошок представляет собой полиметилметакрилат, модифицированный эластомерами. Жидкость - метилметакрилат с ингибиторами. Пластмасса обладает хорошей технологичностью.

Пластмасса бесцветная для базисов протеза представляет собой полимер на основе очищенного от стабилизатора полиметилметакрилата, содержащего антистаритель, и состоит из порошка и жидкости. Отличается от других выпускаемых базисных материалов повышенной прочностью и прозрачностью. Технологические манипуляции с пластмассой не отличаются от общепринятых. Импортные аналоги базисных пластмасс, поставляемых в Россию, по основным физико-механическим показателям соответствуют отечественным. Так, например, базисная пластмасса горячей полимеризации Паладон-65 поставляется фирмой «Хереус Кульцер» (Германия) в следующей комплектации:

мономер и полимер розового цвета;

мономер и полимер розового цвета с прожилками;

мономер и полимер розового замутненного цвета с прожилками «сосудов»;

мономер и бесцветный полимер.

Импакт-2000 - акриловая пластмасса горячего отвердения для базисов съемных протезов производства фирмы «Босворт» (США) обладает высокой ударопрочностью и стойкостью к деформации и усталостным разрушениям под воздействием изгибающих нагрузок.

Известны также такие пластмассы, как Магнум фирмы «Воко» (Германия); Мега Л фирмы «Мегадента» (Германия); Футура акрил-2000 - пластмасса фирмы «Шутц-Дентал» (Германия); QC-20, Селектаплюс, Тревалон, Тревалон-С - акриловые розовые пластмассы фирмы «Дентсплай» (США), Акрон М Си - акриловая пластмасса разных цветов (розовый, бесцветный, розовый с прожилками «сосудов») фирмы «ДжиСи» (Япония) и др.

акриловый пластмасса протез компрессионный

Заключение

Согласно прогнозам старения населения Западных стран к 2025 году более половины его составят люди старше 50 лет. Даже не смотря на достижения в профилактике стоматологических заболеваний, вероятно, что многим из этих людей потребуются для замещения утраченных зубов съемные, полные и частичные зубные протезы. В настоящее время в Северной Америке около 32 миллионов жителей носят акриловые протезы и каждый год для протезирования изготавливается 9 миллионов полных и 4,5 миллиона частичных протезов. Пациентам важно, чтобы их обеспечили эстетичными и высоко функциональными протезами.

Акриловые протезы обладают рядом преимуществ:

. Доступная цена,

. Хорошая эстетика,

. Нет жевательной нагрузки на зубы

Но есть и недостатки:

. Отсутствие нагрузки на зубы является не только преимуществом, но одновременно и недостатком. Так как альвеолярный отросток испытывает повышенную нагрузку, из-за чего происходит ускоренная атрофия кости. Протез уже не может ровно прилегать к протезному ложу и начинает «болтаться.

. Из-за больших размеров базиса нарушается дикция, вкусовые, температурные и тактильные ощущения;

. Долгий период адаптации;

. Материал, из которого сделан базис, в некоторых случаях может вызывать аллергические реакции.

Похожие работы на - Формовка пластмасс в ортопедической стоматологии

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!