Радиация вокруг нас

  • Вид работы:
    Реферат
  • Предмет:
    Безопасность жизнедеятельности
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    162,4 Кб
  • Опубликовано:
    2015-10-25
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Радиация вокруг нас

Министерство образования и науки Российский Федерации ФГАУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Физико-технологический институт

Кафедра технической физики







Реферат

по дисциплине «Введение в профессиональную деятельность»

Тема: Радиация вокруг нас









Екатеринбург

Введение

Начиная свою работу, я поставила цель: выяснить, что такое радиация. Также необходимо решить следующие задачи: откуда появилась радиация, что она из себя представляет, какие виды радиации существуют, какие последствия могут быть в результате воздействия радиации на живые организмы, в чем заключаются положительные стороны радиоактивности. Все это необходимо рассмотреть с различных точек зрения.

Вступив в новый, 21 век, мир все больше и больше сталкивается с целым рядом глобальных проблем. Проблемы эти особого рода. Они затрагивают интересы всего человечества.

Радиоактивность отнюдь не новое явление; новизна состоит в том, как люди пытаются её использовать. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Радиоактивные материалы вошли в состав Земли с самого её рождения. Даже человек слегка радиоактивен, поскольку в организме есть тот же радиоактивный изотоп калий-40 - незаменимый элемент, участвующий в ряде важных метаболических процессов.

Радиация - это явление, происходящее в радиоактивных элементах, ядерных реакторах, при ядерных взрывах, сопровождающееся испусканием частиц и различными излучениями, в результате чего возникают вредные и опасные факторы, воздействующие на людей. Следовательно, термин «ионизирующие излучения» есть одна из сторон проявления физико-химических процессов, протекающих в радиоактивных элементах.

1. Открытие радиации

Ионизирующее излучение сопровождало и Большой взрыв, с которого, как мы сейчас полагаем, началось существование нашей Вселенной около 20 миллиардов лет назад. С того времени радиация постоянно наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Даже человек слегка радиоактивен, так как во всякой живой ткани присутствуют в следовых количествах радиоактивные вещества. Но с момента открытия этого универсального фундаментального явления не прошло еще и ста лет.

Рис. 1

В 1896 году французский ученый Анри Беккерель положил несколько фотографических пластинок в ящик стола, придавив их кусками какого-то минерала, содержащего уран. Когда он проявил пластинки, то, к своему удивлению, обнаружил на них следы каких-то излучений, которые он приписал урану. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слово «радиоактивность». В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения таинственным образом превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один - радием, поскольку по-латыни это слово означает «испускающий лучи». И открытие Беккереля, и исследования супругов Кюри были подготовлены более ранним, очень важным событием в научном мире - открытием в 1895 году рентгеновских лучей; эти лучи были названы так по имени открывшего их (тоже, в общем, случайно) немецкого физика Вильгельма Рентгена.

Реакция обывателей тех далеких лет была курьезной и воинствующей.

Так некоторые нью-йоркские газеты писали, что новые лучи способны фотографировать души умерших. Рид, член законодательного собрания в Нью-Джерси 19 февраля 1896 года внес законопроект, запрещающий из этических соображений использовать рентгеновские лучи в театральных биноклях. Раздраженная ситуацией лондонская газета «Pall Mall» писала в передовой: «Самое лучшее, что нужно сделать цивилизованным странам - это объединится и сжечь все рентгеновские лучи, и оборудование утопить в океане. Пусть рыбы разглядывают свои кости». Многие жители Германии в письмах непосредственно к Рентгену просили его прислать рентгеновские лучи по почте.

2. Виды радиации

Радиация - излучение энергии в виде быстрых элементарных частиц или электромагнитных волн. При превращениях (распадах) радиоактивных ядер атомов возникают различные виды излучения: альфа-, бета-, гамма-излучение, рентгеновское излучение, нейтроны, тяжелые ионы. При взаимодействии с веществом энергия излучения передается атомам и молекулам, превращая их в заряженные частицы - ионы. В результате ионизации разрываются химические связи молекул в живых организмах, и тем самым вызываются биологически важные (соматические и генетические) изменения.

Излучение, которое несет достаточное количество энергии, способно к удалению электронов из атомов. Этот процесс называется ионизацией, а излучение, способное удалить электрон из атома, называется ионизирующим (в отличие, например, от электромагнитного излучения солнца, которое таковым не является).

Нестабильные нуклиды стремятся перейти в устойчивое состояние. Они могут выделять свою избыточную энергию в процессе распада. Распад означает, что радиоактивный нуклид испускает ионизирующее излучение в форме частиц или электромагнитных волн (гамма-квантов).

В быту ионизирующее излучение ошибочно называется радиоактивным излучением. Правильное выражение - ионизирующее излучение. Рассмотрим процессы α-, b- и g-излучения.

α-излучение

Нестабильное ядро находится в процессе излучения своей избыточной энергии за счет испускания частицы, которая является ядром гелия и состоит из двух протонов и двух нейтронов. Эта частица называется α-частица.

α-частицы - положительно заряженные ядра гелия, обладающие высокой энергией.

Ионизация вещества альфа-частицей

Когда α-частица проходит в непосредственной близости от электрона, она притягивает его и может вырвать с нормальной орбиты. Атом теряет электрон и таким образом преобразуется в положительно заряженный ион. Так α-частицы обычно ионизируют вещество.

Ионизация атома требует приблизительно 30-35 эВ (электрон-вольт) энергии. Таким образом, α-частица, обладающая, например, 5 000 000 эВ энергии в начале ее движения, может стать источником создания более чем 100 000 ионов прежде, чем она перейдет в состояние покоя.

Масса α-частиц примерно в 7 000 раз больше массы электрона. Большая масса α-частиц определяет прямолинейность их прохождения через электронные оболочки атомов при ионизации вещества. α-частица теряет маленькую часть своей первоначальной энергии на каждом электроне, который она отрывает из атомов вещества, проходя через него. Кинетическая энергия α-частицы и ее скорость при этом непрерывно уменьшаются. Когда вся кинетическая энергия израсходована, α-частица приходит в состояние покоя. В этот момент она захватит два электрона и, преобразовавшись в атом гелия, теряет свою способность ионизировать материю.

Расстояние, на которое ионизирующее излучение может проникать в вещество, называется его проникающей способностью.В воздухе пробег α-частицы равен нескольким сантиметрам. Толстый лист бумаги остановит частицу полностью.

В тканях тела человека пробег частицы - менее 0,7 мм. Альфа-излучение, воздействующее на незащищенную часть тела, не может проникнуть даже через внешний слой клеток кожи и не причиняет вреда организму.

Поэтому альфа-излучение опасно только тогда, когда альфа-частицы попадают внутрь организма (с воздухом, питьевой водой и пищевыми продуктами) и напрямую воздействуют на клетки органов, вызывая их повреждения.

β-излучение

β-излучение - это процесс испускания электронов непосредственно из ядра атома. Электрон в ядре создается при распаде нейтрона на протон и электрон. Протон остается в ядре, в то время как электрон испускается в виде β-излучения.

Ионизация вещества β-частицей

Вылетевший из ядра радионуклида электрон (β-частица) выбивает один из орбитальных электронов стабильного химического элемента. Эти два электрона имеют одинаковый электрический заряд и массу. Поэтому, встретившись, электроны оттолкнутся друг друга, изменив свои первоначальные направления движения.

Когда атом теряет электрон, то он превращается в положительно заряженный ион.

Проникающая способность β-частицы значительно больше, чем α-частицы, потому что электрический заряд β-частицы - вдвое меньше заряда α-частицы. Кроме того, масса β-частицы - приблизительно в 7000 раз меньше массы α-частицы. Из-за ее маленькой массы и маленького заряда ионизация, вызванная β-частицей меньше, и, как следствие, энергия β-частицы расходуется на более значительном расстоянии.

Проникающая способность β-частицы в воздухе изменяется от 0,1 до 20 метров в зависимости от начальной энергии частицы. В большинстве случаев средства индивидуальной защиты и обувь обеспечивают достаточную защиту от внешнего облучения организма β-частицами. Большой риск облучения β-частицами связан с попаданием их внутрь организма при приеме пищи.

γ-излучение

γ-излучение не состоит из частиц, как α- и β-излучения. Оно, также как свет Солнца, представляет собой электромагнитную волну. Гамма-излучение это - электромагнитное (фотонное) излучение, состоящее из гамма-квантов и испускаемое при переходе ядер из возбужденного состояния в основное при ядерных реакциях или аннигиляции частиц. Это излучение имеет высокую проникающую способность вследствие того, что оно обладает значительно меньшей длиной волны, чем свет и радиоволны. Энергия γ-излучения может достигать больших величин, а скорость распространения γ-квантов равна скорости света. Как правило, γ-излучение сопутствует α и β-излучениям, так как в природе практически не встречаются атомы, излучающие только γ-кванты. γ-излучение сходно с рентгеновским излучением, но отличается от рентгеновского излучения природой происхождения, длиной электромагнитной волны и частотой.

Ионизация вещества g-излучением

g-излучение, проходящее через вещество, имеет возможность ионизировать это вещество, передавая свою энергию электронам атомов, составляющих его. Энергия излучения постепенно уменьшается. Поскольку g-излучение не имеет никакого электрического заряда, его способность ионизировать атомы вещества намного меньше, чем у α- и β-излучения.

Защититься от воздействия γ-излучения сложнее, чем от воздействия α- и β-частиц. Проникающая способность его очень высока, и γ-излучение способно насквозь пронизывать живую человеческую ткань. Нельзя однозначно утверждать, что вещество некоторой толщиной полностью остановит γ-излучение. Часть излучения будет остановлена, а часть его - нет. Однако, чем более толстый слой имеет защита, и чем больше удельный вес и атомный номер вещества, которое используется в качестве защиты, тем более она эффективна. Толщина материала, требуемого, чтобы уменьшить излучение в два раза - называется слоем половинного ослабления. Уменьшить мощность γ-излучения на 50% могут, например, 1 см свинца, 5 см бетона, или 10 см воды. Кроме этого, защититься от воздействия радиации можно временем и расстоянием. Чем меньше время воздействия ионизирующего излучения на организм - тем меньше доза облучения. Грубый расчет может помочь Вам определить дозу, которую Вы получите в течение некоторого промежутка времени. Свойством всех источников ионизирующего излучения является то, что мощность дозы уменьшается с расстоянием. Источник излучения может иметь различную конфигурацию: точечный, объемный, поверхностный или линейный источник. Излучение от точечного источника уменьшается пропорционально увеличению квадрата расстояния до него. Простая и эффективная мера защиты от внешнего излучения - находиться настолько далеко, насколько возможно, от источника ионизирующего излучения.

. Источники радиации

Радиация действительно опасна: в больших дозах она приводит к поражению тканей, живой клетки, в малых - вызывает раковые явления и способствует генетическим изменениям.

По происхождению радиация бывает различной, например, естественная, космические лучи, земная радиация и др.Так как основную часть дозы облучения население получает от естественных источников, то большинства из них избежать просто невозможно.

Человек подвергается двум видам облучения: внешнему и внутреннему. Дозы облучения сильно различаются и зависят, главным образом, от того, где люди живут.

Естественные источники радиации

Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой тип облучения называют внутренним.

Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах - соответственно ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровен, герметизация помещений и даже полеты на самолетах - все это увеличивает уровень облучения за счет естественных источников радиации.

Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффективной эквивалентной дозы, получаемой населением, в основном, вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом, путем внешнего облучения.

Космические лучи

Радиационный фон, создаваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации. Космические лучи, в основном, приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут достигать поверхности Земли или взаимодействовать с ее атмосферой, порождая вторичное излучение и приводя к образованию различных радионуклидов.

Нет такого места на Земле, куда бы ни падал этот невидимый космический душ. Но одни участки земной поверхности более подвержены его действию, чем другие. Северный и Южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы (из которых в основном и состоят космические лучи). Существеннее, однако, то, что уровень облучения растет с высотой, поскольку при этом над нами остается все меньше воздуха, играющего роль защитного экрана.

Земная радиация

Основные радиоактивные изотопы, встречающиеся в горных породах Земли, - это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232-долгоживущих изотопов, включившихся в состав Земли с самого ее рождения.

Разумеется, уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентрации радионуклидов в том или ином участке земной коры.

Средняя по миру доза природного облучения составляет 2,4 мЗв в год. Основной вклад дает газ радон. Самый большой уровень излучения в горных районах, а также там, где много песков и, особенно, горной породы - гранита. Например, в метро.

Рекордным местом на планете по природному фону являются пляжи Копакабаны в Бразилии, где накоплены, так называемые, монацитовые пески, способные поднять годовую дозу до 100 мЗв. В прибрежных районах Бразилии естественное облучение выше в 200 раз, чем на вулканических почвах Италии.

Внутреннее облучение

В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом, или же через повреждения и разрезы на коже.

Если радиоактивные вещества попадут в Ваш организм в результате миграции радионуклидов в окружающей среде и по пищевым цепочкам, ваше тело будет подвергаться внутреннему облучению.

Совсем небольшая часть этой дозы приходится на радиоактивные изотопы типа углерода-14 и трития, которые образуются под воздействием космической радиации.

Все остальное поступает от источников земного происхождения.

В среднем человек получает около 180 микроЗивертов в год за счет калия-40, который усваивается организмом вместе с нерадиоактивными изотопами калия, необходимыми для жизнедеятельности организма.

Однако большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в меньшей степени от радионуклидов ряда тория-232.

Радон

В природе радон встречается в двух основных формах: в виде радона - 222, члена радиоактивного ряда, образуемого продуктами распада урана-238, и в виде радона-220, члена радиоактивного ряда тория-232. По-видимому, радон-222 примерно в 20 раз важнее, чем радон-220 (имеется в виду вклад в суммарную дозу облучения), однако для удобства оба изотопа в дальнейшем будут рассматриваться вместе и называться просто радоном. Вообще говоря, большая часть облучения исходит от дочерних продуктов распада радона, а не от самого радона.

Возникает вопрос: почему радон так опасен? Он же инертный газ, и, естественно, ни в каких биохимических процессах участвовать не может. Дело, однако, в том, что некоторая его часть растворяется в крови легочной ткани и разносится по всему организму. Кроме того, он сорбируется на любых пылевых, аэрозольных и смолистых отложениях в дыхательных путях; именно поэтому радоновая опасность резко повышается для шахтеров, у которых запыленность легких нередкое явление, и для курящих - из-за смолистых и аэрозольных отложений, обусловленных табачным дымом.

Но и это еще полбеды. У радона сравнительно малый период полураспада, и его собственное излучение не создало бы и десятой доли возникающих проблем, даже с учетом того, что он, как и любой α-излучатель, достаточно опасен при внутреннем облучении. Однако, по-настоящему страшны радиоактивные продукты его распада, в особенности α-активные полоний-218 и полоний-214. Они, в отличие от радона, химически активны, достаточно прочно удерживаются организмом и эффективно воздействуют на живые ткани (в том числе на жизненно важные) опаснейшим альфа-излучением. Таким образом, собственно радон играет скромную, но зловредную роль «переносчика», как грызун при распространении чумы.

Радон высвобождается из земной коры, но его концентрация в наружном воздухе существенно различается для разных точек земного шара.

Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Поступая внутрь помещения тем или иным путем (просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из материалов, использованных в конструкции дома), радон накапливается в нем.

Самые распространенные строительные материалы - дерево, кирпич и бетон - выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит и пемза.

В среднем концентрация радона в ванной комнате примерно в три раза выше, чем на кухне, и приблизительно 40 раз выше, чем в жилых комнатах.

А самый простой и самой эффективной мерой снижения радоновой опасности является вентиляция.

Другие источники радиации

Уголь, подобно большинству других природных материалов, содержит ничтожные количества первичных радионуклидов. Последние, извлеченные вместе с углем из недр земли, после сжигания угля попадают в окружающую среду, где могут служить источником облучения людей.

При сжигании угля большая часть его минеральных компонентов спекается в шлак или золу, куда в основном и попадают радиоактивные вещества. Большая часть золы и шлаки остаются на дне топки электросиловой станции. Однако более легкая зольная пыль уносится тягой в трубу электростанции. Облака, извергаемые трубами тепловых электростанций, приводят к дополнительному облучению людей, а осевшие на землю частички могут вновь вернуться в воздух в составе пыли.

Мировой выброс урана и тория от сгорания угля составляет около 40000 т ежегодно. В процессе сжигания угля теряется больше потенциальной энергии, чем выбрасывается.

ТЭЦ на угле России выбрасывают радионуклиды, превышающие 1000 т. в год по урану. Для сравнения предприятиями Росатома России в 2004 г. в водные объекты сброшено около 7 т урана, выбросу в атмосферу - 2,9 т.

Еще один источник облучения населения - термальные водоемы. Некоторые страны эксплуатируют подземные резервуары пара и горячей воды для производства электроэнергии и отопления домов; один такой источник вращает турбины электростанции в Лардерелло в Италии с начала нашего века. Измерения эмиссии радона на этой и еще на двух, значительно более мелких, электростанциях в Италии показали, что на каждый гигаВатт*год вырабатываемой ими электроэнергии приходится ожидаемая коллективная эффективная эквивалентная доза 6 чел*Зв, т. е. в три раза больше аналогичной дозы облучения от электростанций, работающих на угле.

Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий в сырье в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон, да и сами удобрения радиоактивны, и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры.

Не много известно также о вкладе в облучение населения от зольной пыли, собираемой очистными устройствами. В некоторых странах более трети ее используется в хозяйстве, в основном в качестве добавки к цементам и бетонам.

Все эти применения могут привести к увеличению радиационного облучения, но сведений по этим вопросам публикуется крайне мало.

. Воздействие радиации на живые организмы

В органах и тканях биологических объектов, как и в любой среде при облучении в результате поглощения энергии идут процессы ионизации и возбуждения атомов. Эти процессы лежат в основе биологического действия излучений. Его мерой служит количество поглощенной организмом энергии.

В реакции организма на облучение можно выделить четыре фазы. Первая, физическая фаза ионизации и возбуждения атомов длится 10-13 сек. Во второй, химико-физической фазе, протекающей 10-10 сек образуются высокоактивные в химическом отношении радикалы, которые, взаимодействуя с различными соединениями, дают начало вторичным радикалам, имеющим значительно большие, по сравнению с первичными, сроки жизни. В третьей, химической фазе, длящейся 10-6 сек, образовавшиеся радикалы, вступают в реакции с органическими молекулами клеток, что приводит к изменению биологических свойств молекул.

Описанные процессы первых трех фаз являются первичными и определяют дальнейшее развитие лучевого поражения. В следующей за ними четвертой, биологической фазе химические изменения молекул преобразуются в клеточные изменения. Наиболее чувствительным к облучению является ядро клетки, а наибольшие последствия вызывает повреждение ДНК, содержащей наследственную информацию. В результате облучения в зависимости от величины поглощенной дозы клетка гибнет или становится неполноценной в функциональном отношении. Время протекания четвертой фазы очень различно и в зависимости от условий может растянуться на годы или даже на всю жизнь.

Воздействие радиационного излучения на живой организм вызывает в нем различные обратимые и необратимые биологические изменения. И эти изменения делятся на две категории - соматические изменения, вызываемые непосредственно у человека, и генетические, возникающие у потомков. Тяжесть воздействия радиации на человека зависит от того, как происходит это воздействие - сразу или порциями. Большинство органов успевает восстановиться в той или и ной степени от радиации, поэтому они лучше переносят серию кратковременных доз, по сравнению с той же суммарной дозой облучения, получаемую за один раз. Также, стоит заметить, что дети сильнее подвержены воздействию радиации, чем взрослый человек. Большинство органов взрослого человека не так подвержены радиации - это почки, печень, мочевой пузырь, хрящевые ткани. Далее для примера показан вред организму от однократного воздействия гамма-излучения.

Однократное воздействие гамма-излучения

зВ - смерть наступает через несколько часов или дней вследствие повреждения центральной нервной системы

-50 зВ - смерть наступает через одну-две недели вследствие внутренних кровоизлияний

-5 зВ - 50% облученных умирает в течение одного-двух месяцев вследствие поражения клеток костного мозга

зВ - нижний уровень развития лучевой болезни

,75 - кратковременные незначительные изменения состава крови

,30 - облучение при рентгеноскопии желудка (разовое),

,25 - допустимое аварийное облучение персонала (разовое),

,1 - допустимое аварийное облучение населения (разовое),

,05 - допустимое облучение персонала в нормальных условиях за год,

,005 - допустимое облучение населения в нормальных условиях за год,

,0035 - годовая эквивалентная доза облучения за счет всех источников излучения в среднем для жителя России.

В течение многих лет после открытия радиации основным поражающим воздействием облучения считалось лишь покраснение кожи. До пятидесятых годов XX века основным фактором непосредственного воздействия радиации считалось прямое радиационное поражение некоторых органов и тканей: кожи, костного мозга, центральной нервной системы, желудочно-кишечного тракта (так называемая острая лучевая болезнь).

Одним из первичных эффектов облучения живой ткани является разрыв молекул белка и образование новых молекул, чуждых организму. Эти продукты тканевого распада - чуждые молекулы - уничтожаются антителами, которые вырабатываются некоторыми лейкоцитами (белыми кровяными клетками). Защищаясь от продуктов распада, организм до какого-то предела способен увеличивать число лейкоцитов (образование повышенного числа лейкоцитов называется лейкоцитозом). При дальнейшем действии радиации образующиеся в большом числе для борьбы с чужеродными белками антитела не успевают созревать, и наступает лейкоз или лейкемия - опухолевое системное поражение крови.

К началу шестидесятых годов выяснились, что многочисленные облучения могут сказаться не сразу, а через несколько (иногда несколько десятков) лет. Этот так называемый латентный (скрытый) период оказывается разным для разных видов рака, для нарушений кровообращения, шизофрении, катаракты и других заболеваний, вызываемых радиацией.

5. Использование радиоактивности в мирных целях

радиация частица облучение радон

Люди научились применять радиацию в мирных целях, с высоким уровнем безопасности, что позволило поднять практически все отрасли на новый уровень.

Получение энергии с помощью АЭС. Из всех отраслей хозяйственной деятельности человека энергетика оказывает самое большое влияние на нашу жизнь. Тепло и свет в домах, транспортные потоки и работа промышленности - все это требует затрат энергии. Эта отрасль является одной из самых быстроразвивающихся. За 30 лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт.

Мало у кого вызывает сомнения то, что атомная энергетика заняла прочное место в энергетическом балансе человечества.

Рассмотрим применение радиации в дефектоскопии. Рентгеновская и гамма-дефектоскопия - одно из наиболее распространенных применений излучения в промышленности, позволяющее контролировать качество материалов. Рентгеновский метод является неразрушающим, так что проверяемый материал может затем использоваться по назначению. И рентгеновская, и гамма-дефектоскопия основаны на проникающей способности рентгеновского излучения и особенностях его поглощения в материалах.

Гамма-излучение применяется для химических превращений, например, в процессах полимеризации.

Пожалуй, одной из самых главных развивающихся отраслей является ядерная медицина. Ядерная медицина - раздел медицины, связанный с использованием достижений ядерной физики, в частности, радиоизотопов, и т. д.

На сегодняшний день ядерная медицина позволяет исследовать практически все системы органов человека и находит применение в неврологии, кардиологии, онкологии, эндокринологии, пульмонологии и других разделах медицины.

С помощью методов ядерной медицины изучают кровоснабжение органов, метаболизм желчи, функцию почек, мочевого пузыря, щитовидной железы.

Возможно не только получение статических изображений, но и наложение изображений, полученных в разные моменты времени, для изучения динамики. Такая техника применяется, например, при оценке работы сердца.

В России уже активно применяются два типа диагностики с использованием радиоизотопов - сцинтиграфия и позитронно-эмиссионная томография. Они позволяют создать полные модели работы органов.

Медики считают, что при малых дозах радиация оказывает стимулирующее воздействие, тренируя систему биологической защиты человека.

На многих курортах используются радоновые ванны, где уровень радиации немного выше чем в природных условиях.

Было замечено, что у принимающих эти ванны улучшается работоспособность, успокаивается нервная система, быстрее заживают травмы.

Исследования иностранных учёных говорят о том, что частота и смертность от всех видов рака ниже в областях с более высоким естественным радиационным фоном (к таковым можно отнести большинство солнечных стран).

Заключение

Подводя итог своей работы, я считаю, что цель моего реферата достигнута, мной были отражены основные понятия, касающиеся радиации. Кроме того, работая над рефератом я выяснила, что радиация.

Список использованной литературы

1. Петров Н.Н. «Человек в чрезвычайных ситуациях». Учебное пособие - Челябинск: Южно-Уральское книжное изд-во, 1995.

. Фомин А.Д. «Организация охраны труда на предприятии в современных условиях». Новосибирск, изд-во «Модус», 1997.

. Книга "Атомная мифология" - Алексея Яблокова.

. "Ядерная энергия: вопросы и ответы" - Гринпис Инт.

. Статья журналиста Бориса Некрасова.


Не нашел материал для своей работы?
Поможем написать качественную работу
Без плагиата!