Теорема Штольца

  • Вид работы:
    Реферат
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    76,87 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Теорема Штольца

Содержание работы:

1. Формулировка и доказательство теоремы Штольца.

2. Применение теоремы Штольца:

a) ;

b) нахождение предела «среднего арифметического» первых n значений варианты ;

c) ;

d) .

3. Применение теоремы Штольца к нахождению некоторых пределов отношения последовательностей.

4. Нахождение некоторых пределов отношения функций с помощью теоремы Штольца.




























Для определения пределов неопределенных выражений  типа  часто бывает полезна следующая теорема, принадлежащая Штольцу.

Пусть варианта , причем – хотя бы начиная с некоторого листа – с возрастанием n и  возрастает:  . Тогда   =,

Если только существует предел справа (конечный или даже бесконечный).

Допустим, что этот предел равен конечному числу :

.

Тогда по любому заданному  найдется такой номер N, что для n>N будет

или

.

Значит, какое бы n>N ни взять, все дроби , , …, , лежат между этими границами. Так как знаменатели их, ввиду возрастания yn вместе с номером n, положительны, то между теми же границами содержится и дробь , числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при n>N

.

Напишем теперь тождество:

,

откуда

.

Второе слагаемое справа при n>N становится <; первое же слагаемое, ввиду того, что , также будет <, скажем, для n>N. Если при этом взять N>N, то для n>N, очевидно, , что и доказывает наше утверждение.

Примеры:

1. Пусть, например, . Отсюда, прежде всего вытекает, что (для достаточно больших n) , следовательно, вместе с yn и xn, причем варианта xn возрастает с возрастанием номера n. В таком случае, доказанную теорему можно применить к обратному отношению

(ибо здесь предел уже конечен), откуда и следует, что , что и требовалось доказать.

2. При а>1


Этот результат с помощью теоремы Штольца получается сразу:


3.  Применим теорему Штольца к доказательству следующего интересного предложения:

Если варианта anимеет предел (конечный или бесконечный), то этот же предел имеет и варианта

(“среднее арифметическое” первых n значений варианты аn).

Действительно, полагая в теореме Штольца

Xn=a1+a2+…+an, yn=n,

Имеем:

Например, если мы знаем, что ,

то и      

4. Рассмотрим теперь варианту (считая k-натуральным)

,

которая представляет неопределённость вида .

Полагая в теореме Штольца

xn=1k+2k+…+nk, yn=nk+1,

будем иметь

.

Но

(n-1)k+1=nk+1-(k+1)nk+… ,

так что

nk+1-(n-1)k+1=(k+1)nk+…

и

    .

5. Определим предел варианты

   ,

представляющей в первой форме неопределенность вида , а во второй – вида . Произведя вычитание дробей, получим на этот раз неопределенное выражение вида :

.

Полагая xn равным числителю этой дроби, а yn – знаменателю, применим еще раз ту же теорему. Получим

.

Но  ,

а   ,

так что, окончательно,

.

Пример 1.

====== ===.

Пример 2.

=

==

==

==

==

=.

Пример 3.

=

=.

Теорема Штольца справедлива для последовательностей, но т.к. последовательности есть частный случай функций, то эту теорему можно обобщить для функций.

Теорема.

Пусть функция , причем, начиная с некоторой xk, g(xk+1)>g(xk), т.е. функция возрастающая.

Тогда          ,

если только существует предел справа конечный или бесконечный.

Доказательство:

Допустим, что этот предел равен конечному числу k

.

Тогда, по определению предела

или

.

Значит, какой бы  ни взять, все дроби

, , …,

лежат между этими границами. Так как знаменатели их, ввиду возрастания g(xn) вместе с x(n), положительны, то между теми же границами содержится и дробь , числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при

.

Напишем тождество(которое легко проверить):

,

Откуда

.

Второе слагаемое справа при  становится ; первое же слагаемое, ввиду того, что , так же будет , скажем, для . Если при этом взять , то для , очевидно , что и доказывает теорему.

 

 

Примеры:

Найти следующие пределы:

1.   очевидна неопределенность

===2

2.   неопределенность

====0

3.   неопределенность

===


Литература:

 

“Задачи и упражнения по математическому анализу” под редакцией Б.П.Демидовича. Издательство “Наука”, Москва 1996г.

Г.М.Фихтенгольц “Курс дифференциального и интегрального исчисления” Физматгиз 1962г. Москва.


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!