Источники шумоизлучения суден

  • Вид работы:
    Реферат
  • Предмет:
    Транспорт, грузоперевозки
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    1,03 Мб
  • Опубликовано:
    2015-02-20
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Источники шумоизлучения суден

Содержание

1. Источники шума на судах

. Основные физические поля корабля и способы их снижения

.1 Акустическое поле корабля

.2 Тепловое поле корабля

.3 Гидродинамическое поле корабля

. Измерение и анализ шумности судов

1. Источники шума на судах

Источники шумоизлучения суден - кавитационные, виброакустические, гидродинамические, турбулентные, шумы движителей.

На любом судне шум от его источников распространяется по воздуху и по корпусным конструкциям судна в виде звуковой вибрации. Поэтому принято различать воздушный шум и структурный шум. Воздушный шум главным образом отмечается в тех помещениях, где находятся источники шума (машинно-котельное отделение, производственный цех на плавзаводе и т.д.). Однако он может проникать в жилые и служебные помещения - через переборки, палубы, подволоки, по вентиляционным каналам, через различные отверстия (капы, люки, иллюминаторы) и т.д.

Основными источниками шума на судах являются главные двигатели и винторулевой комплекс. Источниками меньшей интенсивности, но также создающими повышенный шум при установке без соблюдения соответствующих правил, являются вспомогательные двигатели и механизмы, системы вентиляции и кондиционирования воздуха, электрорадионавигационное оборудование и бытовые системы. В машинных отделениях уровень шума определяется шумом энергетической установки; в жилых, общественных и служебных помещениях при кормовом расположении надстройки преобладающим является структурный звук, возбуждаемый элементами винторулевого комплекса и энергетической установки, а также аэродинамический шум, создаваемый системами вентиляции и кондиционирования воздуха; в рулевых рубках, других помещениях и крыльях ходового мостика определяющими являются шумы электрорадионавигационного оборудования, выхлопа дизелей, воздухоприемных устройств.

Распространение структурного шума происходит через фундаменты и различные не опорные связи (например, трубопроводы) на корпусные конструкции судна. Достигая ограждающих конструкций помещений, он вызывает их вибрацию, которая в свою очередь вызывает упругие колебания воздуха, воспринимаемые уже как воздушный шум.

Источниками шума на судах являются главные двигатели, вспомогательные дизель генераторы, системы вентиляции машинно-котельных отделений, жилых и служебных помещений, рефустановки, технологическое оборудование, движители судна, водяные системы бытового обслуживания, лифты, лебёдки, промысловые механизмы, грузовые краны, удары волн и льда о корпус судна, звуковые сигналы и т.п.

Гребные винты являются источниками низкочастотной вибрации, воздушного и структурного шума, которые особенно ощущаются в корме судна. К особой категории источников шума следует отнести навигационные приборы, шум которых является серьёзной помехой в помещениях ходового мостика. Природа этого шума - переменные электромагнитные процессы, создаваемые электрическими машинами-сельсинами.

Уровни шума в надстройке с жилыми, общественными и служебными помещениями, а также номенклатура средств противошумового комплекса в значительной степени зависят от ее расположения относительно основных источников шума. Наименьший шум и вибрация в помещениях при минимальных затратах средств на их снижение имеют место при расположении надстройки с жилыми, общественными и служебными помещениями в средней или носовой части судна при размещении энергетической установки в корме, так как в этом случае потребуется снижение шума только систем вентиляции и кондиционирования воздуха, расположенных в районе жилой надстройки вспомогательных механизмов и устройств, а также бытовых систем.

По сравнению с кормовым расположением надстройки шум в жилых помещениях только за счет удаления от главных источников уменьшается на 12-18 дБА.

При совместном размещении надстройки и машинного отделения в средней части судна требуется снижение шума, возбуждаемого энергетической установкой. Уменьшение шума по сравнению с кормовым расположением только за счет удаления от кормы составляет 5-9 дБА.

При кормовом размещении надстройки требуется снижение шума и вибрации, вызываемых винторулевым комплексом. Объем работ и затраты значительно увеличиваются, при этом не всегда может быть гарантировано выполнение санитарных требований. При проектировании судна должны быть рассчитаны собственные частоты колебаний корпуса и надстройки и приняты своевременные меры по предотвращению возникновения резонансных колебаний с возмущающими усилиями, вызываемыми винтами и двигателями в эксплуатационных условиях. Отсутствие резонансов должно быть проверено на головном судне испытаниями с помощью вибрационной машины и измерениями в ходовых условиях, близких к эксплуатационным. Не рекомендуется проектировать короткие и высокие надстройки, так как это, как правило, ведет к усилению вибрации. Не допускается размещение жилых помещений в корпусе судна ниже верхней палубы. При проектировании энергетической установки следует выбирать такие двигатели и механизмы, которые удовлетворяют не только технико-эксплуатационным требованиям, но и имеют лучшие виброакустические характеристики.

Не рекомендуется применять без специальных уравновешивающих устройств или виброизоляции пятицилиндровые двухтактные и четырехцилиндровые четырехтактные дизели.

2. Основные физические поля корабля и способы их снижения

Целесообразность и возможность выполнения Рекомендаций на судах, находящихся в постройке, эксплуатации и ремонте, определяется заказчиком или судовладельцем по согласованию с органами Государственного санитарного надзора и технической инспекцией труда Федеративного независимого профсоюза работников водного транспорта.

При разработке средств борьбы с шумом следует руководствоваться действующими санитарными правилами и технической документацией, а также учитывать новейшие достижения в области борьбы с шумом и вибрацией.

.1 Акустическое поле корабля

Акустическим полем корабля называется область пространства, в которой распределяются акустические волны, образованные или собственно кораблем или отражающиеся от корабля. Волнообразно распространяющееся колебательное движение частиц упругой среды принято называть звуком. Скорость распространения звука зависит от упругих свойств среды (в воздухе 330 м/сек, в воде 1500 м/сек, в стали около 5000 м/сек). Скорость распространения звука в воде зависит, кроме того, от ее физического состояния, увеличиваясь с повышением температуры, солености и гидростатического давления. Движущийся корабль является мощным источником звука, создающим в воде акустическое поле большой интенсивности. Это поле называют гидроакустическим полем корабля (ГАПК). В соответствии с классификацией рассмотренной ранее, ГАПК подразделяется на: - первичное ГАПК (шумность), которое формируется кораблем собственным источником акустических волн; - вторичное ГАПК (гидролакационное), которое формируется в следствии отражающихся от корабля акустических волн излучаемых посторонним источником. Гидроакустическое поле (шумность) корабля широко используется в стационарных, корабельных и авиационных системах обнаружения и классификации, а также системах самонаведения и неконтактных взрывателях минно-торпедного оружия. Гидроакустическое поле корабля представляет собой совокупность наложенных друг на друга полей, создаваемых различными источниками, основными из которых являются: Шумы, создаваемые движителями (винтами) при их вращении. Подводный шум корабля от работ гребных винтов разделяется на следующие составляющие: - шум вращение гребного винта, - вихревой шум, - шум вибрации кромок лопастей винтов («пение»), - кавитационный шум. Шумы, излучаемые корпусом корабля на ходу и на стоянке как результат его вибрации от работы механизмов. Шумы, создаваемые обтеканием корпуса корабля водой при его движении. Уровни подводного шума зависят от скорости хода корабля и от глубины погружения (для ПЛ). На скоростях хода выше критической начинается область интенсивного шумообразования. В процессе эксплуатации корабля шумность его по ряду причин может измениться. Так увеличению шумности способствует выработка технического ресурса корабельных механизмов, что приводит к их расцентровки, расбалансировки и увеличению вибрации. Колебательная энергия механизмов вызывает вибрации корпуса, что приводит к возмущениям в забортной среде, определяющим подводный шум. Вибрации механизмов передаются на корпус: - через опорные связи механизмов с корпусом (фундаменты); - через неопорные связи механизмов с корпусом (трубопроводы, водопроводы, кабели); - через воздух в отсеках и помещениях НК. Насосы, связанные с забортной средой, передают колебательную энергию кроме указанных путей по рабочей среде трубопровода непосредственно в воду. Шумность корабля характеризует не только его скрытность от гидроакустических средств обнаружения и степень защиты от минно-торпедного оружия вероятного противника, но и определяет условия работы собственных гидроакустических средств обнаружения и целеуказания, создавая помехи работе этих средств. Шумность имеет большое значение для подводных лодок (ПЛ) так как она во многом определяет их скрытность. Контроль за шумностью и ее снижение является важнейшей задачей всего личного состава корабля и особенно ПЛ. В целях обеспечения акустической защиты корабля проводится ряд организационно-технических и тактических мероприятий. К данным мероприятиям относятся следующие: улучшение виброакустических характеристик механизмов; удаление механизмов от конструкций наружного корпуса, излучающего подводный шум, путём их установки на палубы, платформы и переборки; виброизоляция механизмов и систем от основного корпуса с помощью звукоизолирующих амортизаторов, гибких вставок, муфт, амортизирующих подвесок трубопроводов и специальных шумозащищающих фундаментов; вибропоглащение и звукоизоляция звуковых вибраций фундаментных и корпусных конструкций, систем трубопроводов с помощью звукоизолирующих и вибродемфирующих покрытий; звукоизоляция и звукопоглащение воздушного шума механизмов за счет применения покрытий, кожухов, экранов, глушителей в воздуховодах; применение в системах забортной воды глушителей гидродинамического шума. Кавитационный шум снижается выполнением следующих мероприятий: применение малошумных гребных винтов; применение низкооборотных винтов; увеличение числа лопастей; балансировка гребного винта и линии вала. Совокупность конструктивных мероприятий и действий личного состава направленных на снижение шумности, позволяют в значительной степени снизить уровень гидроакустического поля корабля.

.2 Тепловое поле корабля

Уже во второй половине XIX века, с появлением кораблей с механическими движителями, пришла и проблема обеспечения приемлемых уровней шумов и вибрации. Спущенный на воду в 1900 г. великолепный лайнер «Дойчланд», обладатель «Голубой ленты Атлантики», из-за сильнейшей вибрации вскоре был переоборудован в тихоходное круизное судно. Известен также случай, когда построенный в ФРГ турбоход не был принят заказчиком из-за его чрезмерной шумности.

Внешний шум судна является источником шумового загрязнения окружающей среды, отрицательно влияющего на морских животных. Например, сделанная в конце 1950-х гг. в СССР попытка использования для подводных исследований рыбных запасов боевой дизельной подводной лодки проекта 613 не увенчалась успехом: субмарина не годилась для наблюдений за рыбами не только из-за большого размера, но и шумности.

.3 Гидродинамическое поле корабля

Гидродинамическим полем корабля (ГПК) называется область пространства, прилегающая к кораблю, в которой наблюдается изменение гидростатического давления, вызываемое движением корабля. По физической сущности ГПК это возмущение движущимся кораблем естественного гидродинамического поля Мирового океана. Если в каждом месте Мирового океана параметры его гидродинамического поля обусловлены в наибольшей степени случайными явлениями, учесть которые заранее очень трудно, то движущийся корабль вносит не случайные, а вполне закономерные изменения в эти параметры, учесть которые можно с необходимой для практики точностью. При движении корабля в воде частицы жидкости, расположенные на определенных расстояниях от его корпуса, приходят в состояние возмущенного движения. При движении этих частиц меняется величина гидростатического давления в месте движения корабля, образуется гидродинамическое поле корабля определенных параметров. При движении ПЛ под водой область изменения давления распространяется на поверхность воды так же, как и на грунт. Если движение осуществляется на небольших глубинах погружения, то на поверхности воды появляется визуально хорошо заметный волновой гидродинамический след. Таким образом, гидродинамическое поле корабля создается при его движении относительно окружающей жидкости и зависит от водоизмещения, главных размерений, формы корпуса, скорости корабля, а также от глубины моря (расстояние до днища корабля). Гидродинамическое поле корабля (ГПК) широко используется в неконтактных гидродинамических взрывателях донных мин. Обеспечить гидродинамическую защиту корабля любого типа или существенным образом снизить параметры ГПК с помощью конструктивных средств очень трудно. Для этого необходимо создавать сложную форму корпуса, что приведет к увеличению сопротивления движению. Поэтому решение вопроса гидродинамической защиты осуществляется в основном организационными мероприятиями. Для обеспечения гидродинамической защиты любого корабля необходимо и достаточно, чтобы параметры его ГПК по величине не превосходили параметров настройки неконтактного гидродинамического взрывателя. Уровни гидродинамического поля уменьшаются при уменьшении скорости корабля. Снижение скорости корабля до безопасной является основным способом защиты кораблей от гидродинамических мин. Графики безопасных скоростей корабля и правила пользования ими даются в инструкции по выбору безопасных скоростей корабля при плавании в районах возможной постановки гидродинамических мин. Наряду с эксплуатационными физическими полями корабля, существуют также поля зависящие практически только от физических и химических свойств материалов из которых построен корабль. К таким физическим полям корабля относятся магнитное и электрическое поле.

3. Измерение и анализ шумности судов

У современных морских судов весьма существенным элементом оснащения являются гидроакустические навигационные средства (эхолоты, лаги, гидролокаторы), а у судов рыболовного флота - также и рыбопоисковые эхолокационные приборы, обеспечивающие промысловую деятельность. Для них шумы судна являются помехой.

В 2009 г. Акустическим обществом Америки (ASA) принят первый в мире стандарт измерения подводного шума гражданских судов ANSI/ASA S12.64-2009 в связи с возрастающим шумовым загрязнением окружающей среды. корабль шум гидродинамическая судно

С 1 января 2010 г. в Норвегии вступила в силу Глава 24 Части 6 Правил классификации судов новой постройки (Rules for Classification of Ships Newbuildings), утвержденная DNV в декабре 2009 г. Данная глава (Silent Class Notation) содержит классификацию судов по уровням подводного шума. Изложенные в ней требования будут предъявляться к подводному шуму судов для снижения воздействия на окружающую среду и/или для обеспечения гидроакустической эксплуатационной пригодности судов, эксплуатация которых напрямую зависит от использования гидроакустического оборудования.

По аналогии с гражданской авиацией можно предположить, что в недалеком будущем определенные ограничения будут наложены на эксплуатацию гражданских судов и морских сооружений, не отвечающих требованиям по уровням подводного шума.

Практическая реализация и оценка эффективности каждого отдельного технического решения, принимаемого для снижения шумности, возможны только на основе достоверных результатов натурных акустических испытаний кораблей.

Во ФГУП «ВНИИФТРИ» создано семейство стационарных и судовых измерительных гидроакустических комплексов. Основным их отличием от зарубежных аналогов является возможность измерения уровней шумоизлучения при соотношении сигнал/помеха значительно меньше 1: до -6 дБ… -10 дБ, тогда как вся измерительная аппаратура, основанная на традиционных подходах, допускает проведение измерений только при соотношении сигнал/помеха не менее +6 дБ.

Созданные компанией «ВНИИФТРИ» измерительные комплексы, основанные на использовании уникальных методов обработки сигналов, оригинального программно-алгоритмического и методического обеспечения, позволяют значительно сократить время проведения испытаний, практически исключив периоды ожидания благоприятных погодных условий.

Рис. 1. Измерение шумности гражданского судна


Методика измерения шумов движущегося судна заключается в следующем: звук принимается приемниками стационарной, либо мобильной подводной приемной системы, находящейся на некотором расстоянии от трассы движения объекта (рис. 1), и анализируется спектральный состав в момент прохода объекта вблизи приемника с использованием помехоустойчивых алгоритмов. Измеряемыми параметрами являются уровни звукового давления в стандартных (октавных, третьоктавных) полосах при контроле, а также в узких полосах при определении причин превышения норм и выявлении источников повышенного шума. Подводный шум неподвижного судна или морского нефтегазового сооружения может быть измерен с использованием подводной стационарной приемной системы, расположенной вокруг сооружения, либо с использованием мобильной буксируемой системы (рис. 2).


Созданные ФГУП «ВНИИФТРИ» методы и алгоритмы помехоустойчивых измерений применяются для решения достаточно широкого круга задач. Одна из них - поиск течей в подводных трубопроводах, находящихся на большой глубине (рис. 3). Гидроакустическое приемное подводное устройство (рис.4) буксируется измерительным судном над трассой донного трубопровода. Контрольно-измерительная аппаратура на борту судна производит накопление и помехоустойчивую обработку гидроакустического сигнала (рис. 3).

Рис. 5. Помехоустойчивая обработка гидроакустических данных


Программное обеспечение обработки сигналов реализует широкий круг алгоритмов анализа данных, таких как направленный и сверхнаправленный прием, узкополосная фильтрация и слежение за частотой, помехоустойчивые алгоритмы измерения уровней подводного шума, алгоритмы апертурного синтеза, сонографический анализ. Благодаря этому обеспечивается высокая помехоустойчивость измерений - в 3-10 раз больше, чем у аналогичных комплексов, например, таких, как ALD sensor фирмы Co.L.Mar.


Таким образом, методы решения проблем измерения шумности кораблей, возникшие исключительно в интересах военного кораблестроения и ВМФ, также находят широкое применение и в гражданских отраслях промышленности

Похожие работы на - Источники шумоизлучения суден

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!