Впервые открытые минералы

  • Вид работы:
    Реферат
  • Предмет:
    Геология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    31,85 Кб
  • Опубликовано:
    2014-11-04
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Впервые открытые минералы

Уральский государственный горный университет

Кафедра геологии









Реферат

На тему: Впервые открытые минералы


Группа: УП-12-4

Студент: Попова М.С.

Преподаватель:

профессор Ю.А. Поленов





Екатеринбург

Апрель 2014г

Содержание

Ведение

. Главные сведения о минералах и их свойства

.1 Происхождение минералов

. Первые открытия

. Урал - "пояс каменный"

Заключение

Список литературы

Введение

Геология (греч. "гео" - земля, "логос" - учение) - одна из важнейших наук о Земле. Она занимается изучением состава, строения, истории развития Земли и процессов, протекающих в ее недрах и на поверхности

Одним из нескольких основных направлений в геологии является изучение вещественного состава литосферы: горных пород, минералов, химических элементов.

Изучением вещественного состава литосферы занимается комплекс геологических наук, объединяющихся часто под названием геохимического цикла. К ним относятся: петрография (греч. "петрос" - камень, скала, "графо" - пишу, описываю), или петрология - наука, изучающая магматические и метаморфические горные породы, их состав, структуру, условия образования, степень изменения под влиянием различных факторов и закономерность распределения в земной коре. Литология (греч. "литос" - камень) - наука, изучающая осадочные горные породы. Минералогия - наука, изучающая минералы - природные химические соединения или отдельные химические элементы, слагающие горные породы. Кристаллография и кристаллохимия занимаются изучением кристаллов и кристаллического состояния минералов. Геохимия - обобщающая синтезирующая наука о вещественном составе литосферы, опирающаяся на достижения указанных выше наук и изучающая историю химических элементов, законы их распределения и миграции в недрах Земли и на ее поверхности. С рождением изотопной геохимии в геологии открылась новая страница в восстановлении истории геологического развития Земли.

Одна из важнейших задач геологии - прогнозирование залежей минерального сырья, составляющего основу экономической мощи государства. Этим занимается наука о месторождениях полезных ископаемых, в сферу которой входят как рудные и нерудные ископаемые, так и горючие - нефть, газ, уголь, горючие сланцы. Не менее важным полезным ископаемым в наши дни является вода, особенно подземная, происхождением, условиями залегания, составом и закономерностями движений которой занимается наука гидрогеология (греч. "гидер" - вода), связанная как с химией, так и с физикой и, конечно, с геологией.

1. Главные сведения о минералах и их свойства

Земная кора состоит в основном из веществ, называемых минералами - от редких и чрезвычайно ценных алмазов до различных руд, из которых получают металлы для наших повседневных нужд.

Минералы сыграли важнейшую роль в развитии человека и создании цивилизации. В каменном веке люди пользовались кремниевыми орудиями труда. Около 10 000 лет назад человек освоил способ получения меди из руды, а с изобретением бронзы (сплава меди и олова) начался новый век - бронзовый.

С начала железного века 3300 лет назад, человек осваивал все больше и больше способов использования полезных ископаемых добытых из земной коры. Современная промышленность по-прежнему зависит от минеральных ресурсов Земли. Знания о том, что они собой представляют, как оказались там, где мы их нашли и умение отличить их друг от друга необходимы при поиске новых залежей.

. При застывании магмы образуются магматические породы, а также минералы. Кристаллические минералы, например, кварц, полевой шпат и пириты, встречаются в пустотах породы. 2. Аллювиальные отложения рек привлекают геологов потому, что в этих местах скапливаются драгоценные камни и металлы из-за выветривания и эрозии различных пород. 3. Известняк, измененный под воздействием температуры и магматических газов, является источником руд некоторых металлов, например, меди. 4. Там, где глинистый сланец подвергся воздействию высоких температур, появляется гранат. 5. В гидротермических жилах добывают золото и серебро. 6. Отложения песка, гравия и галечника эродировали из известняка и песчаника. 7. Метаморфическая порода, подвергшаяся огромному давлению и претерпевшая большие изменения, таит в себе бирюзу, а иногда и изумруды. 8. Осадочные напластования часто содержат доломит

Ученые насчитывают около 3000 видов минералов, но только 100 из них достаточно широко распространены. Минералы относятся к неорганическому (неживому) миру. Чаще всего они являются твердыми веществами. Исключение составляет ртуть.

Золото, один из самых дорогих минералов, добывают в виде песка, пластин и самородков Часто золотодобывающие шахты уходят на много километров под землю Золоту часто сопутствует уран.

Органические и неорганические вещества

Многие называют минералами все, что добывают из земли. Они относят к этому разряду также ископаемое топливо, например, уголь. Однако, минералоги - люди, которые профессионально изучают минералы - считают, что уголь, нефть и природный газ - органические субстанции, поскольку образовались из остатков когда-то живых растений и животных, а потому минералами не являются.

У минералов определенный химический состав. Они всегда однородны, другими словами, все части минерала одинаковы. Этим они отличаются oт горных пород, состоящих из нескольких минералов.

Минералы состоят из химических элементов, т. е. веществ, которые уже нельзя разложить на другие вещества химическим путем. Из 107 известных науке элементов 90 встречаются в естественном виде в земной коре. Некоторые, их называют самородными элементами, пребывают в земной коре в чистом или почти чистом виде. Существует 22 самородных элемента, среди них - золото, серебро и алмазы (одна из форм углерода).

Земная кора

Два элемента, кислород и кремний, составляют 74 % массы земной коры. Другие шесть элементов (алюминий, железо, кальций, натрий, калий и магний) - еще 24,27 %. Все вместе они формируют почти 99 % земной коры.

Самые распространенные минералы - это силикаты, химическое соединение кислорода и кремния, часто с примесью одного или более из остальных шести элементов. Чаще всего встречаются такие силикаты, как кварц, слюда и полевые шпаты. Все три в разных пропорциях являются основными компонентами разных типов гранита. Кварц, эродированный из гранита, часто накапливается на побережье и образует песчаные пляжи.

Определение минералов

Часто встречающиеся минералы, такие как полевые шпаты, кварц и слюда, называются породообразующими. Это отличает их от минералов, которые находят только в небольших количествах. Кальцит - еще один породообразующий минерал. Он формирует известняковые породы.

В природе существует так много минералов, что минералогам пришлось выработать целую систему их определения, основанную на физических и химических свойствах. Иногда распознать минерал помогают очень простые свойства, например, цвет или твердость, а порой для этого требуются сложные тесты в лабораторных условиях с применением реагентов.

Некоторые минералы, такие как лазурит (синий) и малахит (зеленый), можно распознать по цвету. Но цвет часто обманчив, потому что у многих минералов он довольно широко варьируется. Различия в цвете зависят от примесей, температуры, освещения, радиации и эрозии.

Черта минерала и твердость

Если поскрести минерал, у нас получится порошок, называемый чертой минерала. Черта является важной характерной особенностью; она иногда отличается от цвета минерала в образце и обычно постоянна для одного и того же минерала.

Система кристаллической симметрии (сингония)

Оси симметрии кристаллов, специфические для каждой системы примеры кристаллизации минералов в каждой системе.

Пирит относится к Кубической сингонии. У него 12 или 6 граней. Еще один пример этой системы - алмаз.

Вульфенит относится к тетрагональной сингонии у него красивые желто-оранжевые кристаллы. Минерал находят в местах отложении свинца. Блеск варьируется

Топаз относится к ромбическим кристаллам. Этот красивый драгоценный камень, обычно желтого цвета, иногда может быть бесцветным небесно голубым и даже розовым, если подвергся воздействию высокой температуры.

Ортоклаз - это моносимметричный кристалл. Он бывает белым розовым, желтым или коричневым. Важный компонент магматической породы.

Бирюза - хороший пример триклинной сингонии, хотя правильные кристаллы образует редко. Обычно ее находят в виде аморфного минерала.

Из берилла получится изумруд, если он окрашен примесью хрома. Виды кварца, рубин и сапфир могут кристаллизоваться как гексагональные минералы.

Высокотемпературный кварц (слева) относится к тригональным кристаллам типа драгоценных камней. Встречается как в тригональной, так и в гексагональной сингониях Доломит тоже может иметь любую из этих сингонии.

Еще минералы различаются по твердости, оцениваемой по шкале Мооса (по имени австрийского минералога) от 1 до 10. Мягкий минерал тальк на ней соответствует 1, а алмаз, самый твердый из природных материалов, - 10.

Удельный вес

Удельный вес, или плотность, - это соотношение между весом вещества и одинакового количества воды. Это довольно важная для определения величина. Если мы примем удельный вес воды за 1, то у большинства минералов он варьируется от 2,2 до 3,2. У некоторых минералов (таких немного) очень высокий или очень низкий удельный вес. Например, у графита он равен 1,9, а у золота от 15 до 20, в зависимости от чистоты.

Еще одним показателем для определения минералов является кливаж, т. е. то, как минерал распадается на части при ударе. Можно получить информацию о минерале и поднеся его к свету. Прозрачные минералы так легко пропускают свет, что сквозь них все видно Полупрозрачные тоже пропускают свет, но сквозь них уже ничего не видно Непрозрачные минералы вовсе не пропускают свеч, а, наоборот, поглощают его или отражают. Эти свойства также используются в процессе определения. Часто у минералов бывает металлический или радужный блеск. Например, у галена (свинцовая руда) - металлический блеск, он блестит почти как металл, а у большинства силикатов - стекловидный, они напоминают блестящее стекло. Существуют и другие виды блеска - адамантовый (как у алмаза), жемчужный, шелковистый (или атласный), землистый (тусклый). У некоторых минералов может быть несколько видов блеска. Так, блеск кальцитов варьируется от стекловидного до землистого.

У многих минералов есть специфические свойства, по которым их легко узнать. Например, скородит и самородный элемент мышьяк при нагревании пахнут чесноком, а тальк - мыльный на ощупь.

Некоторые минералы флюоресцируют (светятся или меняют цвет) в ультрафиолетовых или рентгеновских лучах. Другие электрически заряжаются при нагревании или под давлением

А есть минералы, распознать которые можно только посредством специальных тестов в лаборатории Одни растворяются только в горячих кислотах, а в холодных - нет, другие -только в концентрированных, но не в разведенных.

Кристаллы

Минералы имеют определенный состав и свою химическую формулу. Химическая формула галита (каменной соли) NaCl. Это значит, что галит - это химическое соединение натрия (Na) и хлора (Cl).

Так как у каждого минерала определенный и постоянный состав, атомы его элементов выстраивают правильную трехмерную решетку специфической для него структуры Эти кристаллические решетки являются геометрическими фигурами, плоские грани которых располагаются симметрично. Если вы на какое-то время оставите в плоской посуде немного соленой воды, она испарится, и на дне образуются кристаллы соли. В увеличительное стекло видно, что они представляют собой правильные кубы.

Изучение кристаллов важно для определения минералов, т. к. кристаллы большинства минералов имеют определенную форму. Существует семь основных кристаллографических, или изометрических, систем, называемых сингониями. Алмаз, например, принадлежит к кубической системе, рубин - к гексагональной, бирюза - к триклинной. Каждую систему можно описать в соответствии со спецификой ее симметрии - свойства, которое при вращении кристалла вокруг оси позволяет ему появляться в тождественном виде два или больше раз за один полный оборот. Кристалл можно определить по количеству осей симметрии.

Драгоценные минералы

Еще в каменном веке люди делали украшения из золота, в бронзовом веке - из серебра. Сегодня в распоряжении ювелиров множество минералов. Самые дорогие драгоценные камни - это алмаз (особенно бесцветный), а также изумруд, рубин и сапфир, которые ценятся в первую очередь за цвет. Эти камни настолько дорогие, что их вес измеряют в каратах. Один карат равен 200 миллиграммам.

Алмазы формируются под огромным давлением в структурах магматической породы в форме трубы, кимберлитах. Они зарождаются глубоко в мантии Земли. Алмаз - это разновидность химически чистого угля и по химическому составу не отличается от обыкновенного мягкого минерала графита, знакомого нам по карандашам. Алмаз ценят за твердость и блеск, приобретаемый при огранке и шлифовке.

Причина такого отличия алмаза от графита в том, что у них по-разному расположены атомы, а значит, они имеют разную внутреннюю структуру Способность вещества существовать в двух и более формах при одинаковом химическом составе называется полиморфизмом.

Так, например, изумруд - это редкая и зеленая разновидность берилла. Самые красивые экземпляры находят в Колумбии (Южная Америка). А самые известные в мире рубины (разновидность твердого минерала корунда) - в Мьянме (бывшая Бирма). Прекрасные сапфиры (голубые корунды) добывают также в Азии - на Шри-Ланке и в Таиланде.

.1 Происхождение минералов

Минералогия исследует происхождение, условия нахождения и природные ассоциации минералов. Со времени возникновения Земли примерно 4,6 млрд. лет назад многие минералы разрушились в результате механического дробления, химических преобразований или плавления. Но элементы, слагавшие эти минералы, сохранились, перегруппировались и образовали новые минералы. Таким образом, существующие ныне минералы являются продуктами процессов, развивавшихся на протяжении геологической истории Земли.

По элементному составу земная кора представляет собой каркасную постройку, состоящую из ионов кислорода, связанных с более мелкими ионами кремния и алюминия. Таким образом, главными минералами являются силикаты, на долю которых приходится ок. 35% всех известных минералов и ок. 40% - наиболее распространенных. Важнейшие из них - полевые шпаты (семейство алюмосиликатов, содержащих калий, натрий и кальций, реже - барий). Другие распространенные породообразующие силикаты представлены кварцем (впрочем, он чаще относится к оксидам), слюдами, амфиболами, пироксенами и оливином.

Изверженные породы. Изверженные, или магматические, породы образуются при охлаждении и кристаллизации расплавленной магмы. Процентное содержание различных минералов и, следовательно, тип образовавшейся породы зависят от соотношения элементов, содержавшихся в магме во время ее затвердевания. Каждый тип изверженной горной породы обычно состоит из ограниченного набора минералов, называющихся главными породообразующими. В дополнение к ним могут присутствовать в меньших количествах второстепенные и акцессорные минералы. Например, главными минералами в граните могут быть калиевый полевой шпат (30%), натрий-кальциевый полевой шпат (30%), кварц (30%), слюды и роговая обманка (10%). В качестве акцессорных минералов могут присутствовать циркон, сфен, апатит, магнетит и ильменит.

Изверженные породы обычно классифицируют в зависимости от вида и количества каждого из содержащихся в них полевых шпатов. Однако в некоторых породах полевой шпат отсутствует. Далее изверженные породы классифицируют по их структуре, которая отражает условия затвердевания породы. Медленно кристаллизующаяся глубоко в недрах Земли магма порождает интрузивные плутонические породы с крупно- или среднезернистой структурой. Если магма извергается на поверхность в виде лавы, она быстро остывает, и возникают тонкозернистые вулканические (эффузивные, или излившиеся) породы. Иногда некоторые вулканические породы (например, обсидиан) остывают столь быстро, что не успевает произойти их кристаллизация; подобные породы имеют стекловидный облик (вулканические стекла).

Осадочные породы. Когда коренные породы выветриваются или размываются, обломочный или растворенный материал оказывается включенным в состав осадочных пород. В результате химического выветривания минералов, происходящего на границе литосферы и атмосферы, формируются новые минералы, например, глинистые - из полевого шпата. Некоторые элементы высвобождаются при растворении минералов (например, кальцита) в поверхностных водах. Однако другие минералы, например кварц, даже механически раздробленные, сохраняют устойчивость к химическому выветриванию.

Высвободившиеся при выветривании механически и химически устойчивые минералы с достаточно высокой плотностью образуют на земной поверхности россыпные месторождения. Из россыпей, чаще всего аллювиальных (речных), добывают золото, платину, алмазы, иные драгоценные камни, оловянный камень (касситерит), минералы других металлов. В определенных климатических условиях формируются мощные коры выветривания, нередко обогащенные рудными минералами. С корами выветривания бывают сопряжены промышленные месторождения бокситов (руд алюминия), скопления гематита (железных руд), водных силикатов никеля, минералов ниобия и других редких металлов.

Основная масса продуктов выветривания выносится по системе водотоков в озера и моря, на дне которых образует слоистую осадочную толщу. Глинистые сланцы сложены в основном глинистыми минералами, а песчаник состоит преимущественно из сцементированных зерен кварца. Растворенный материал может извлекаться из воды живыми организмами или выпадать в осадок в результате химических реакций и испарения. Карбонат кальция поглощается из морской воды моллюсками, которые строят из него свои твердые раковины. Большая часть известняков образуется в результате аккумуляции раковин и скелетов морских организмов, хотя частично карбонат кальция осаждается химическим путем.

Эвапоритовые залежи формируются в результате испарения морской воды. Эвапориты - обширная группа минералов, в число которых входят галит (поваренная соль), гипс и ангидрит (сульфаты кальция), сильвин (хлорид калия); все они имеют важное практическое применение. Эти минералы осаждаются также при испарении с поверхности соляных озер, но в этом случае повышение концентрации редких элементов может привести к дополнительному осаждению некоторых других минералов. Именно в такой обстановке образуются бораты.

Метаморфические породы. Региональный метаморфизм. Изверженные и осадочные породы, захороненные на большой глубине, под действием температуры и давления испытывают преобразования, называющиеся метаморфическими, в ходе которых меняются первоначальные свойства горных пород, а исходные минералы перекристаллизовываются или полностью трансформируются. В результате минералы обычно располагаются вдоль параллельных плоскостей, придавая породам сланцеватый облик. Тонкосланцеватые метаморфические породы называются сланцами. Они часто бывают обогащены пластинчатыми силикатными минералами (слюдой, хлоритом или тальком). Более грубосланцеватые метаморфические породы - гнейсы; в них чередуются полосы кварца, полевого шпата и темноцветных минералов. Когда сланцы и гнейсы содержат какой-либо типично метаморфический минерал, это отражается в названии породы, например, силлиманитовый или ставролитовый сланец, кианитовый или гранатовый гнейс.

Контактовый метаморфизм. При подъеме магмы в верхние слои земной коры в породах, в которые она внедрилась, обычно происходят изменения, т.н. контактовый метаморфизм. Эти изменения проявляются в перекристаллизации первоначальных или образовании новых минералов. Степень метаморфизма зависит как от типа магмы, так и от типа породы, которую она пронизывает. Глинистые и близкие им по химическому составу породы преобразуются в контактовые роговики (биотитовые, кордиеритовые, гранатовые и др.). Наиболее интенсивные изменения происходят, когда гранитная магма внедряется в известняки: термическое воздействие является причиной их перекристаллизации и образования мрамора; в результате химического взаимодействия с известняками отделяющихся от магмы растворов образуется большая группа минералов (силикаты кальция и магния: волластонит, гроссуляровый и андрадитовый гранаты, везувиан, или идокраз, эпидот, тремолит и диопсид). В некоторых случаях при контактовом метаморфизме привносятся рудные минералы, что делает породы ценными источниками получения меди, свинца, цинка и вольфрама.

Метасоматоз. В результате регионального и контактового метаморфизма не происходит существенного изменения химического состава исходных пород, а меняются лишь их минеральный состав и внешний облик. Когда растворами привносятся одни элементы и выносятся другие, происходит значительное изменение химического состава пород. Такие вновь образовавшиеся породы называются метосоматическими. Например, взаимодействие известняков с растворами, выделяемыми гранитной магмой в ходе кристаллизации, приводит к образованию вокруг гранитных массивов зон контактово-метасоматических руд - скарпов, которые нередко вмещают оруденение.

2. Первые открытия

Минерал - это встречающийся в природе материал, сформировавшийся посредством геологических процессов, который имеет характерный химический состав, высоко организованное строение атома и определенные физические свойства. Горные породы, для сравнения, это совокупность минералов и они могут не иметь определенного химического состава. Минералы располагаются по составам от чистых элементов и простых солей к очень сложным силикатам с тысячами известных форм. Исследование минералов называют минералогией.

Немногие горные породы преобладающе состоят только из одного минерала. Например, известняк - осадочная горная порода, состоящая почти полностью из минерального кальцита. Другие горные породы содержат много минералов, и определенные минералы могут часто встречаться в разных породах.

Некоторые минералы, такие как кварц, слюда или полевой шпат достаточно распространены, в то время как другие встречались только в одном или двух местах во всем мире. Огромное количество горных пород земной коры состоит из кварца, полевого шпата, слюды, хлорита, каолина, кальцита, эпидота, оливина, авгита, хорнбленда, магнетита, гематита, лимонита и некоторых других минералов. Более половины известных разновидностей минералов настолько редки, что удалось найти лишь горстку их образцов, а многие известны только по одному или двум маленьким зернам.

Коммерчески ценные минералы и горные породы называются индустриальными минералами. Горные породы, из которых добываются минералы в экономических целях, упоминаются как руды (горные породы и минералы, которые остаются, после того, как полезный минерал был отделен от руды, называются пустой породой).

Главный фактор определения в формировании минералов в массе горной породы - это химический состав массы, поскольку определенный минерал может быть сформирован только тогда, когда необходимые элементы присутствуют в породе. Кальцит является самым обычным элементом в известняках, поскольку они состоят по существу из карбоната кальция; кварц обычно встречается в песчаниках и в определенных вулканических породах, которые содержат высокий процент кремния.

Другие факторы имеют равное значение в определении естественного комплекса или парагенезиса породоформирующих минералов, преимущественно способ происхождения горной породы и стадий, через которые она проходит для достижения ее существующего состояния. Две массы горных пород могут иметь почти такой же состав и все же состоять из полностью различных соединений минералов. Склонность к образованию всегда у тех составов, которые будут устойчивыми в момент создания массы горной породы.

Например, гранит возникает при консолидации литой магмы при высоких температурах и больших давлениях, и ее составляющие являются минералами, которые устойчивы при таких условиях. Подвергаемые влажности, углеродистой кислоте и другим субаэральным агентам в обычных температурах поверхности Земли, некоторые оригинальные минералы, такие как кварц и белая слюда относительно устойчивы и остаются незатронутыми. Другая погода или выветривание приводят к новым комбинациями устойчивых соединений.век ознаменован огромным прогрессом в развитии научных представлений о минералах. До 1800 года было известно менее 100 самостоятельных минеральных видов. Начиная с этого рубежа темп открытия новых минералов непрерывно растет. Так, за период с 1800 по 1819 год было открыто 87 минералов. Затем с 1820 по 1919 год за каждые 20 лет регистрировалось в среднем по 185 минералов. В период с 1920 по 1939 год было описано 256 новых минералов, а с 1940 по 1959 год - 342. С 1960 года ежегодно открываются 40-50 новых минералов, и, таким образом, уже сейчас общее число установленных на Земле минералов превысило 4000 (рис. 1). Среди них лишь 20-30 минералов, главнейшие из которых - кварц, полевой шпат и роговая обманка, слагают 99,5% земной коры, а остальные встречаются относительно редко. При этом большая часть известных минералов образуется в приповерхностных условиях, 200 являются продуктами глубинных магматических процессов, а около 1000 связано с химическими реакциями, в которых участвуют нагретые подземные воды (гидротермальные растворы). Совершенствование научных методик и аппаратуры способствует углублению минералогических исследований. Так, на месторождении Сан-Мари-о-Мин (Франция), занимающем около 30 км2, в начале XX века было описано 53 минерала, а спустя 80 лет - уже 140. В.В. Ляхович выявил в гранитах кроме восьми главных породообразующих минералов еще 56 более редких, причем в результате анализа 1 кг раздробленного гранита было найдено лишь 25 минералов, а в образцах с общей массой 116 кг, собранных с поверхности 400 м2, установлено 46 различных минералов. Подобные данные позволили французским исследователям Ж. Буйе и А. Кайо прийти к выводу, что общее число минералов (N ), находящихся на той или иной площади (S ), определяется соотношением N = 7,5 " S 0,18 (где S - площадь, измеряемая в м2). Приведенная формула справедлива в широком интервале значений S, меняющихся от 10 мм2 до размеров всей свободной ото льдов площади земной поверхности, находящейся над уровнем моря и составляющей около 134 " 106 км2.

Как уже отмечалось, в настоящее время на Земле открыто около 4000 минералов. По сравнению с 89 минералами, установленными на Луне, это количество, безусловно, значительно, но по сравнению с числом возможных сочетаний примерно из 90 химических элементов, устойчивых в природе, это число не очень велико. Конечно, численное превосходство земных минералов над лунными имеет свои причины. Сопоставляя эти величины, надо иметь в виду, что масса лунных пород, доставленных на Землю двумя российскими космическими кораблями "Луна" и шестью американскими кораблями "Аполлон", не превышает 380 кг. Это относительно немного, а число минералов, как отмечено выше, растет пропорционально анализируемой массе и площади, с которой они собраны.

Важным фактором, ограничивающим разнообразие лунных минералов, является отсутствие воды в химическом составе Луны. До сих пор на Луне не установлено водосодержащих минералов, и лишь в одном - гетите присутствуют гидроксильные группы. Наоборот, примерно для половины минералов, известных на Земле, характерно участие в их составе молекул воды и ОН-групп. К водосодержащим минералам относятся ~ 75% фосфатов, 65% карбонатов и около 50% силикатов .

Следует подчеркнуть, что и в настоящее время открытие нового минерала является событием в науке. Созданные природой химические соединения расширяют наши представления о формах концентрации химических элементов не только на Земле, но и на других планетах, а также о способах объединения атомов в кристаллических структурах. Анализируя состав, структуру, физические свойства минералов, их соотношения с другими минеральными видами можно воссоздать историю формирования вмещающих горных пород. Многие из открываемых минералов находят и практическое применение. Сейчас трудно представить, что еще 30 лет назад не был известен один из красивейших минералов - чароит, изделия из которого теперь можно найти во многих странах мира (рис. 2). Наконец, открытие нового минерала вносит вклад в минералогическую систематику, которая будит воображение исследователя и помогает выявить параметры, способствующие установлению связей между составом, структурой и физическими свойствами.

Следует особо отметить, что разнообразие геологических и геохимических обстановок на территории России - фактор, благоприятствующий находкам различных минералов. В качестве примера можно привести щелочные породы Кольского полуострова и Карелии, в которых установлено около 500 минералов. Это количество заметно больше числа минералов, установленных в крупнейших минералогических заповедниках мира: Стерлинг (США) - 260, Лангбан (Швеция) - более 200, Цумеб (Намибия) - более 150, Ильменские горы (Россия) - 145, Пршибрам (Чехия) - 108.

Каждый предположительно новый минерал всесторонне анализируют, после чего данные о его составе, структурных особенностях и физических свойствах направляют в комиссию по новым минералам Международной минералогической ассоциации. Одновременно исследователь, нашедший новый минерал, предлагает комиссии свой вариант его названия, которое принимают или отвергают путем тайного голосования.

Обзор утвержденных минеральных видов показывает, что названия примерно 40% из них образованы от фамилий, а иногда и просто имен каких-либо людей . Впервые такие названия начали появляться в конце XVIII века. Первым, кто ввел в минералогию персональные названия, был немецкий минералог Авраам Вернер (1750-1817), который внес большой вклад в создание минералогии как самостоятельной науки. Это нововведение было воспринято многими исследователями не слишком благожелательно. Критика использования персональных названий для минералов продолжается и сейчас. Основным ее аргументом является то, что такие названия никак не связаны со свойствами или какими-либо другими особенностями минералов. Подобная практика, по мнению известного украинского минералога А.С. Поваренных, была оправданна, когда финансирование науки почти целиком зависело от благосклонности аристократов, как это было в Германии, России и некоторых других странах.

Хотя имена некоторых из этих людей стали основой для названий ряда минералов, все же в большинстве названий увековечены имена ученых, и в первую очередь тех, которые связаны с изучением Земли. Это минералоги, кристаллографы, геологи, петрологи, геохимики, горные инженеры, а также коллекционеры и торговцы минералами. Есть минералы, названные в честь ученых других специальностей - химиков, физиков, математиков, астрономов, медиков, а также в честь писателей, поэтов, философов, путешественников, политических деятелей. Например, фосфат беловит, назван в честь академика Н.В. Белова, который основал российскую школу рентгеноструктурного анализа, а Са-борат колеманит - в честь американского коммерсанта У. Коллемана, основателя промышленности по добыче бора в Калифорнии. Один из широко распространенных слюдяных минералов - биотит ,назван в честь французского физика Жана Батиста Био, изучавшего магнетизм и оптику и совместно с Д. Брюстером, открывшим в кристаллах оптическую двуосность. К этой группе можно отнести и минералы, названные в честь В. Рентгена, описавшего в 1895 году новый вид электромагнитных волн, П. Кюри, открывшего полоний и радий, А. Беккереля, установившего радиоактивность урана и его солей.

Некоторые минералы названы в честь исследователей и путешественников, а также в честь космонавтов, исследовавших Космос и Луну. Так, структурно связанный с флюоритом CaF2 гагаринит - редкоземельный катион) назван в честь Ю.А. Гагарина - первого человека, совершившего в 1961 году полет в Космос. Са,Zr-силикат армстронгит ,назван по имени Нила Олдена Армстронга, американского космонавта, впервые ступившего в 1961 году на поверхность Луны.

Чести быть увековеченными в названиях минералов удостаиваются не только ученые, но и личности, известные своими достижениями в других сферах человеческой деятельности. Например, гетит ,назван в честь И. фон Гёте (1749-1832), немецкого писателя, поэта и философа, который неизменно интересовался минералами и даже подарил в 1797 году одну из коллекций музею Санкт-Петербургского горного института. Некоторым минералам присвоены имена президентов США (джеферсонит, рузвельтит), первого премьер-министра Австралии Х.Э. Холта (холтит) и других политических деятелей. В 1998 году опубликованы данные по найденному на Чукотке минералу сороситу Cu(Sn, Sb), открытому российскими, финскими и украинскими исследователями и названному в честь Дж. Сороса, основателя Международного научного фонда, поддержка которого чрезвычайно важна для ученых из республик бывшего Советского Союза .

В последние годы минералам стали все чаще присваивать женские имена. Одно из них - эвеит, посвящено прародительнице человеческого рода Еве. Это название было придумано после того, как уже был открыт адамин, правда названный не в честь Адама, возлюбленного Евы, а в честь Ж.Ж. Адама (1795-1881), французского минералога, предоставившего для исследования первый образец этого минерала. Название U-силиката склодовскита происходит от девичьей фамилии М. Кюри (Склодовская), так как к тому моменту название минерала кюрит уже было связано с именем ее мужа П. Кюри. Арсенат ртути чурсинит назван в честь киноактрисы Л. Чурсиной. Известный швейцарский минералог Х. Сарп посвятил один из открытых им минералов своей жене Шанталь (шанталит). Лонсдейлит, модификация углерода, найденная в местах падений метеоритов, была названа в честь известного английского кристаллографа Кэтлин Лонсдейл, преподававшей этот предмет Маргарет Тэтчер, будущему премьер-министру Великобритании.

Названия минералов по местам их находок составляют вторую по численности группу. Некоторые из них используются с древности, как, например, магнетит названный по Магнезии - стране, граничившей с древней Македонией. В качестве примеров подобных названий можно указать везувиан, найденный на горе Везувий (Италия), или ильменит , найденный в Ильменских горах на Урале. Многие названия минералов связаны со странами, где они были впервые установлены. Среди них сульфид кубанит , а также силикаты иракит и суринамит. Минерал арагонит, ромбическая полиморфная форма , из которой состоит жемчуг, назван в честь испанской провинции Арагон.

Иногда минералы характеризуются довольно необычными названиями. Примером такого рода может служить транквиллитиит, минерал, который открыт в породах, собранных в море Спокойствия на Луне в ходе экспедиции космического корабля "Аполлон-11". Открытый в 1971 году Na,Mn-силикат раит, структура которого была определена лишь в 1997 году с использованием синхротронного излучения, назван в честь международной экспедиции (1969-1970) на папирусной лодке "Ра" под руководством норвежского путешественника Тура Хейердала.

Вместе с тем не всегда можно найти логику в присваиваемых минералам названиях. Так, вполне естественно предположить, что стронцианит SrCO3 - минерал, получивший название в связи с присутствием в его составе стронция. Однако этот минерал был назван по месту его находки в районе Строншиан, в Шотландии. Позже было установлено, что в нем содержится неизвестный в то время элемент, которому впоследствии было присвоено название стронций. Таким же образом ранее неизвестный химический элемент, открытый в берилле, получил название бериллия. Среди наиболее крупных кристаллов различных минералов кристалл берилла, найденный на о-ве Мадагаскар, обладает рекордными размерами. Его длина - 18 м, диаметр - 3,5 м, а масса достигает 380 т.

Некоторые из интересных названий минералов навеяны сходством их окраски и формы с растениями или их семенами. Например, название всем хорошо знакомого полудрагоценного камня малахита происходит от греческого слова мальва, ярко-зеленый цвет листьев которого напоминает цвет малахита. Название другого ювелирного камня - граната происходит от латинского слова, обозначающего плод гранатового дерева, зерна которого по форме близки кристаллам граната.

Довольно необычными и потому хорошо запоминающимися являются названия минералов, производные от имен героев мифов и легенд. Например, встречающаяся в Испании (Альмаден), Калифорнии и других странах в самородном виде ртуть (англ. mercury) названа за свою подвижность по имени римского бога Меркурия, а Ti-силикат нептунит - по имени римского бога моря Нептуна.

Предложениям о названиях новых минералов предшествует большая исследовательская работа, связанная с изучением состава, а также различных физических свойств (формы и симметрии кристаллов, их цвета, твердости, оптических характеристик и т.д.) предположительно нового минерального вида. Собственно на этой основе и шло выделение новых минералов вплоть до конца 30-х годов XX века. С того периода в науку вошел новый мощный аналитический метод, основанный на дифракции рентгеновских лучей кристаллами природных и синтетических соединений.

После демонстрации в 1912 году М. Лауэ и У.Л. и У.Г. Бреггами рентгеновской дифракции минералы стали первыми кристаллическими материалами, которые были исследованы этим методом. В настоящее время рентгенографический анализ кристаллов - один из основных методов изучения состава и структуры минералов и синтетических соединений. Вскоре после открытия рентгеновской дифракции рентгенография быстро доказала свое неоспоримое преимущество в решении многих задач, в том числе в идентификации вещества, по сравнению с химическим анализом и оптической микроскопией. Получаемая на основе рентгенографии информация во многих случаях не может быть достигнута другими аналитическими методами столь же быстро и с той же точностью. Именно поэтому рентгенография стала все шире использоваться при производственном анализе руд, сплавов, синтетических материалов, полупроводников, продуктов металлургии, а также керамической, цементной и химической областей промышленности.

Особенность рентгенографического анализа кристаллических образцов заключается в его многоцелевом назначении, позволяющем решать разные задачи, важнейшей из которых остается качественный анализ или идентификация исследуемого вещества. Основы метода были заложены У.Г. Бреггом, предложившим рассматривать дифракцию в кристалле рентгеновских лучей как отражение от полупрозрачных плоскостей-зеркал, предположительно образованных атомами. Если система параллельных плоскостей в кристалле наклонена по отношению к пучку Х-лучей, то при ее определенной ориентации волны, отраженные от соседних плоскостей, усилят друг друга .Условие этого усиления - разность хода лучей, отраженных соседними плоскостями, равна целому числу длин волн.С использованием этой формулы на основе дифракционной картины кристалла можно для каждого вещества получить набор характерных для него межплоскостных расстояний (d ). Эти величины, а также интенсивности отраженных от этих плоскостей рентгеновских лучей (I ), которые фиксируются на фотопленке или специальными детекторами, являются основой для проведения диагностики исследуемого вещества.

Успешная диагностика неизвестного минерала прежде всего связана с наличием достаточного количества стандартных справочных данных, содержащих величины I и d. Необходимость создания для этой цели библиотек справочных данных была понята сразу же после получения первых рентгенограмм. Так, еще в 1919 году американский исследователь Хелл выявил на основе анализа рентгеновского снимка, что считавшийся до этого химически чистым NaF на самом деле содержал примесь NaHF2 . Однако первые такие библиотеки появились лишь в 1938 году, когда американский исследователь Дж. Ханавальт с соавторами опубликовал статью, посвященную идентификации веществ на основе рентгенофазового анализа и содержавшую рассчитанные порошковые рентгенограммы для 100 соединений. Каждая порошковая рентгенограмма стала рассматриваться как "отпечаток пальцев" химического соединения. После этого Американское общество по исследованию материалов (ASTM) провело работу по систематизации структурных данных, и в 1941 году при участии ASTM известные к тому времени рентген-дифракционные спектры были изданы в форме картотеки с ключом для поиска, схема которого была предложена Дж. Ханавальтом. Ключ включал данные по трем самым интенсивным отражениям, химическую формулу и номер карточки с полной информацией по данному соединению. В последующие годы картотека расширилась до 2500 соединений. Для ее пополнения впоследствии под эгидой ASTM был организован комитет, которому стали оказывать содействие научные организации Великобритании, Франции и Канады. Вскоре комитет приобрел функции международной организации, а в 1969 году стал полностью самостоятельным. Созданная им картотека стала называться "Порошковая дифракционная картотека объединенного комитета порошковых дифракционных стандартов" . В 1978 году 14 международных и национальных научных обществ, в первую очередь США, Германии, Канады, Австралии, Франции, Великобритании и Японии, под эгидой Международного союза кристаллографов учредили ICDD - Международный центр дифракционных данных. Началом создания базы данных ICDD - PDF-2 считается 1940 год. Она состоит из двух независимых частей, включающих сведения о неорганических и органических соединениях соответственно. С 1985 года рентгеновские данные по всем охарактеризованным этим методом соединениям стали доступны в компьютерной форме. Для получения этих данных в настоящее время используются приборы, получившие название рентгеновских дифрактометров. Число этих приборов, установленных в исследовательских лабораториях в разных странах в начале 1998 года, достигло 45 тыс., а число исследователей, использующих эту аппаратуру, оценивается в 1 млн человек.

Принцип формирования картотеки рентгеновских данных хронологический. С 1957 года начат ежегодный выпуск сетов, в которых объединяются рентгеновские данные по разным соединениям, полученные в текущем году. Начиная с 18-го сета, каждый последующий содержит данные по 1500 неорганических соединений. К 1998 года 47 сетов содержали информацию приблизительно о 106 тыс. соединений, причем темп пополнения этой картотеки непрерывно растет и в настоящее время составляет ~ 2500 соединений в год (~ 80% - неорганические соединения, а 20% - органические). Одновременно с ежегодным пополнением картотеки ведется работа по комплектации ее выборок. В разные годы издавались данные по минералам, металлам и сплавам, по наиболее распространенным соединениям. минерал изверженный осадочный метаморфический

Расширение объема рентгенографической информации привело к созданию баз данных, которые теперь распространяются на компакт-дисках. Центром хранения такой информации по неорганическим соединениям является Институт неорганической химии Университета Бонна, а по органическим соединениям - структурный банк Кембриджа. В базе данных по кристаллическим структурам неорганических соединений (ICSD - Inorganic Crystal Structure Database) Университета Бонна на начало 1998 года содержались сведения о 37 800 соединениях. Связь между обоими банками рентгенографических данных (ICDD и ICSD) открывает путь к использованию общей имеющейся в их распоряжении информации, и приведенная выше цифра 106 тыс., характеризующая число порошковых рентгеновских спектров в PDF-2, включает и базу данных ICSD. Сама база PDF-2 насчитывает на начало 1998 года сведения по 65 907 соединениям, в том числе 47 800 порошковых спектров относятся к неорганическим, а 19 400 - к органическим соединениям. Область использования баз данных значительно расширяется благодаря тому, что на основе содержащихся в них сведений можно получить на дисплее компьютера объемное изображение, а также любое сечение структуры рассматриваемого вещества.

Обычно вслед за открытием нового минерала исследователь пытается определить его место среди ранее известных минеральных видов. Классификация минералов развивалась на протяжении столетий, а критерии, положенные в ее основу, изменялись по мере развития минералогии. В древние эпохи в основе систематики минералов лежали области их практического использования. Таким образом, в IV-III веках до нашей эры начиная с древнегреческого философа и естествоиспытателя Теофраста и вплоть до I века н.э. (римский ученый Г. Плиний) минералы разделялись на драгоценные камни, руды, краски и т.д. В средние века арабский ученый Гебер (Джабир ибн Хайана, 721-803) предложил систематику, основанную на внешнем облике кристаллов и их физических свойствах, таких, как твердость, температура плавления, растворимость, спайность и др. Впоследствии эта физическая классификация, дополненная Авиценной (Абу Али Ибн Синой, 980-1037) и Г. Агриколой (1494-1555), просуществовала вплоть до середины XVIII века.

Шведский минералог и химик А.Ф. Кронстед (1722-1765), известный своими работами по систематике цеолитов, был одним из первых, указавшим в 1758 году на важное значение для систематики минералов их химических особенностей, и в частности присутствия в их составе определенных химических элементов. Несколько позже, в 1819 году, Й.Я. Берцелиус (1779-1848) предложил разделять минералы по типу химических анионных комплексов (например, хлориды, сульфаты, силикаты), а не минералы цинка, меди, железа и т.д., как было принято раньше. Химическая классификация получила широкое распространение вплоть до начала XX века, когда начиная с 1913 года после первых структурных определений минералов постепенно стали использовать структурные критерии. Таким образом, вступление минералогии в эпоху, характеризующуюся всесторонним изучением кристаллических структур минералов, сопровождается все большей ролью структурных параметров в современных классификациях минералов. Какие же критерии предлагаются в настоящее время для объединения минералов в общие структурные подразделения?

Любая кристаллическая структура представляет собой упаковку атомов, характеризующуюся определенным периодом повторяемости. Каждая конкретная структура описывается позициями атомов внутри элементарного параллелепипеда (элементарной ячейки), их координацией, а также типом межатомных химических связей. Распределение в пространстве химических связей может быть гомогенным или гетерогенным. Примерами структур с гомогенным распределением связей являются медь, алмаз и некоторые другие минералы, образованные атомами одного типа с одинаковыми связями вдоль трех координатных осей.

В гетерогенных структурах выделяются атомные группировки, связи внутри которых оказываются более прочными по сравнению с другими межатомными взаимодействиями. Такие атомные группировки называются структурными единицами. Выделение структурных единиц - основа для определения места минерала в структурной классификации.

Структурные единицы характеризуются различной протяженностью в пространстве или, иными словами, различной многомерностью. Они могут быть образованы изолированными атомами, а также изолированными (0-мерными) структурными единицами, состоящими из отдельных координационных полиэдров, объединенных в пары (димеры), тройки (тримеры) и т.д., а также в кольца. Одномерные структурные единицы имеют форму цепочек, двумерные - слоев, а трехмерные - каркасов. Таким образом, структурные единицы характеризуются четырьмя типами размерности. Первое разделение всех минералов в рамках структурной классификации основывается на так называемых категориях структурных единиц, число которых равно пяти:

Нетрудно заметить, что 0-мерные структурные единицы характеризуются двумя категориями. В одну из них объединены так называемые атомные структуры, в которых структурные единицы представляют собой плотноупакованные атомы. При этом связи между ними носят преимущественно ненаправленный характер. Возникающие при такой укладке тетра- и октаэдрические пустоты заселяются более мелкими катионами. Примером такого рода структур может служить перовскит, CaTiO3 , в котором крупные атомы Са и О образуют плотнейшую упаковку, становясь тем самым структурными единицами, а катионы Ti занимают одну четверть октаэдрических пустот.

Следующая категория охватывает изолированные атомные или полиэдрические группы конечных размеров. Три оставшиеся категории включают структуры, основные структурные единицы которых имеют форму цепочек, слоев и каркасов. Именно этот подход был недавно использован португальским исследователем Ж. Лима-де-Фариа для систематики 230 структурных типов, характерных для наиболее распространенных породообразующих минералов Земли.

3. Урал - "пояс каменный"

Складчатая система Уральских гор пересекает с севера на юг всю территорию России, отделяя европейскую часть от азиатской. "Каменный пояс", "Земной пояс" - так величали Урал вплоть до XVIII века. Название "Урал" впервые появляется в трудах историка и географа Василия Никитича Татищева. Длина Уральской горной цепи свыше 2000 километров, а максимальная ширина, собственно "каменный пояс", не превышает 200 километров, местами существенно сужаясь.

История освоения Урала человеком уходит корнями в глубокую древность: немногочисленные племена, селившиеся преимущественно по берегам рек, стали осваивать подножье Уральских гор. Медные руды были известны и добывались на Урале еще в доисторическое время, о чем свидетельствуют остатки древних "чудских" горных работ. Чудские копи (от названия племени чудь) - наиболее древние рудные выработки людей бронзового века, добыча руды в них велась на протяжении сотен лет. Производство меди на Урале начинается уже в IV-III тыс. до н. э. Медная руда и олово на рудниках бронзового века добывались в ямах, котлованах, примитивных шахтах. В 1581 году отряд казаков под предводительством Ермака покорил Сибирское ханство. Русское государство заняло всю Восточную Европу и продвинуло свою границу далеко за Урал. Взоры русских людей обращены на восток, где высилась каменная гряда Урала, которая, по слухам, преданиям, редким посещениям, считалась чрезвычайно богатой на руды, минералы и удивительные камни. Необходимо было организовать в стране добычу руды и выплавку из нее металлов: одна за другой отправляются поисковые экспедиции в разные стороны Уральских гор. С XVI века в Приуралье и на Урале известна кустарная добыча бурого железняка и выплавка из него кричного железа в крестьянских домницах. Первые архивные сведения об открытии медных руд относятся к XVII веку. В 1628 году Б. Колмогор нашел железную руду болотного типа (бурый железняк) на восточном склоне Южного Урала. Первый казенный железоделательный завод построен в 1631 году на реке Нице. Медная руда была обнаружена горщиком А.Тумашевым в 1634 году в Григоровой горе. Позднее там же был построен первый в России крупный горный завод - "дедушка" Уральских заводов. Известный рудознатец Д.Тумашев (сын А.Тумашева) в 1669 году открыл залежи железной руды в долине реки Нейвы

Основным этапом освоения Урала можно назвать время промышленного подъема в России. В начале XVIII века Петр I, заботясь о славе и величии России, определил направление развития государства, и "уральские кладовые" открылись перед российскими промышленниками. Начинается широкомасштабное освоение Урала. Медно-колчеданные рудынайдены в верховьях реки Чусовая (Полевское, Гумешевское, Меднорудянское месторождения, Турьинская группа месторождений). Гумешевский рудник расположен в пределах города Полевской, вблизи истоков реки Чусовая. Промышленная разработка рудника началась в 1709 году. Гумешевский рудник знаменит также поделочным малахитом. Первая глыба декоративного малахита массой 1504 килограмма была подарена Екатерине II в 1775 году, и сейчас хранится в музее Санкт-Петербургского Горного института. Меднорудянекий малахит добывался подземным способом до 1918 года. По окраске и рисунку он аналогичен Гумешевскому. В 1702 году указом царя Никите Демидову был передан в собственность казенный Невьянский горный завод с рудниками, для чего было разрешено "леса рубить и уголье жечь и всякие заводы строить". Это положило начало демидовскому промышленному комплексу на Урале. Старший сын Никиты Демидова организовал вместе с отцом добычу асбеста, магнитного железняка, малахита и других драгоценных и поделочных камней.Демидовы построили на Урале 40 металлургических заводов. Демидовские заводы до 1779 года ежегодно поставляли в Адмиралтейство железо, отливали для Черноморского флота и архангельского порта артиллерийские орудия и якоря. В годы войны с Наполеоном они изготавливали артиллерийские снаряды.

Благодаря планомерному исследованию недр, Урал превратился в самый крупный горно-металлургический район России и мира. Были обнаружены богатейшие месторождения железных руд гор Магнитная и Благодать. В 1742 году академиком П. С. Палласом открыто Качканарское железорудное месторождение. Строились многочисленные железоделательные и чугуноплавильные заводы.

Важнейшим событием явилось открытие в 1745 году золоторудного месторождения. В мае 1745 года крестьянин Ерофей Марков нашел в окрестностях села Шарташ кусок кварца с крупинками золота. На месте находки Маркова возник в 1748 году первый в России рудникпо добыче золота. Он назывался сначала Шарташским, с 1753 года- Пышминским. В 1752 году начал работать второй рудник - Березовский. Непосредственно вблизи месторождения в период с 1753 по 1757 год строится золотопромывальный завод, из цехов которого 30 января 1757 года был отправлен в Санкт-Петербург первый слиток золота. Всего на Березовских золотых промыслах за 1754-1914 годы было добыто 3504 пуда золота,в том числе 44,8% рудного. В 1760 году на реке Исеть построена первая в России обогатительная фабрика для извлечения золота. В 1834 году были открыты золотоносные россыпи близ Миасса. Разрабатывались известные Кочкарские россыпи и жилы в восточной части Южного Урала. В начале XIX века Урал стал основным районом добычи золота.

Урал также богат россыпной и коренной платиной. Россыпная платина на Урале была открыта в 1819 году. На реке Нижний Тагил были обнаружены богатейшие Сухо-Висимские месторождения россыпной платины (встречались крупные самородки). В 1829 году открыто Исовское золотоплатиновое месторождение. В конце XIX века Урал стал крупнейшим в мире поставщиком платины. Первые алмазы на Урале были найдены в 1829 году в бассейне реки Койва на Крестовоздвиженском золотоплатиновом прииске. Четырнадцатилетний крепостной Павел Попов обнаружил в приспособлении для промывки и обогащения песков алмаз весом около 40 миллиграммов. За 28 лет дальнейших поисков был найден только 131 алмаз общим весом в 60 карат. Особой гордостью Урала являются поделочные и драгоценные камни. В предгорьях Урала в начале XVII века были найдены залежи яшмы, халцедона, агатов, малахита и других ценных поделочных камней. Близ Верхотурского тракта (село Мурзинка) Д.Тумашев в 1666 году нашел первые уральские изумруды. Позднее он обнаружил на реке Нейве у Мурзинской слободы одно из уникальных в мире скоплений драгоценных камней (аметисты, бериллы, изумруды). На Среднем Урале в течение 1832-1838 годов выявлены практически все известные ныне месторождения. Близ Екатеринбурга были открыты первые месторождения изумруда, получившие название Изумрудных копей, с которыми связано Малышевское бериллиевое месторождение.

Говоря об Урале и его сказочных богатствах, нельзя не упомянуть П. П. Бажова, известного русского писателя, вся жизнь и творчество которого тесно связаны с этими местами. "Летописец" Урала родился в 1879 году, в семье мастера пудлингово-сварочного цеха Сысертского металлургического завода. В своей первой книге "Уральские были" (1924), посвященной жизни и быту сысертских заводов в 80-90-е годы XIX века, Бажов рассказывает о тяжелой и непростой доле горняков. В 1939 году вышло первое издание уральских сказов - "Малахитовая шкатулка". Главная тема бажовских сказов - человек и его труд, талант и мастерство, связь с природой. К середине XVIII века Средний Урал стал крупнейшим металлургическим центром страны. К концу XVIII века он уже прочно занимает ведущее место в экономике России

Следующий этап развития Урала начался в XX веке: возникали новые отрасли промышленности, реконструировались действующие предприятия, развивалась лесная и деревообрабатывающая промышленность. Претерпела качественные изменения черная металлургия. В Великую Отечественную войну Урал стал важнейшей базой для размещения эвакуированных заводов и фабрик. Большинство промышленных предприятий было переведено на выпуск военной продукции. Урал стал главным поставщиком продукции черной металлургии. В послевоенное время Урал оказал большую помощь в восстановлении хозяйства пострадавших от войны западных районов. После более чем 300-летней эксплуатации недр Урал остается важной минерально-сырьевой базой России, особенно по добыче меди, цинка, золота, алмазов, асбеста, минеральных солей, магнезита.

Заключение

Изучение вещественного состава литосферы, как и других процессов, производится различными методами. В первую очередь это прямые геологические методы - непосредственное изучение горных пород в естественных обнажениях на берегах рек, озер, морей, разрезов шахт, рудников, кернов буровых скважин. Все это ограничено относительно небольшими глубинами. В последние десятилетия применяются, в том числе и с помощью ЭВМ, экспериментальные методы, позволяющие моделировать геологические процессы; искусственно получать различные минералы, горные породы; воссоздавать огромные давления и температуры и непосредственно наблюдать за поведением вещества в этих условиях; прогнозировать движение литосферных плит и даже, в какой-то степени, представить облик поверхности нашей планеты в будущие миллионы лет.

Несмотря на свою многовековую историю, минералогия продолжает оставаться живой наукой. Ежегодно открывают десятки новых минералов. Минералы являются основными компонентами вещества Земли и других планет. Поэтому их изучение занимает центральное место в науках о Земле. Несомненно, что впереди у минералогов новые достижения, связанные с исследованиями минерального состава не только земной коры, но и глубинных оболочек Земли. При этом открытие новых минералов и их систематика способствуют генерации новых идей, расширяющих научные представления о составе строении и эволюции земных оболочек.

Список используемой литературы:

1.Ю.А. Поленов "Основы Геологии - курс лекций"/ ред.УГГУ. 2008

2.Бетехтин А.Г. " Курс минералогии: учебное пособие" /М.: КДУ, 2007

3.Л.К. Соколовский, "Общая геология: в 2 тт." / М.: КДУ, 2006.

4.www.bibliotekar.ru

5.http://www.minbook.ru

Похожие работы на - Впервые открытые минералы

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!