Понятие энтропии и информации

  • Вид работы:
    Реферат
  • Предмет:
    Эктеория
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    85,74 Кб
  • Опубликовано:
    2015-02-20
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Понятие энтропии и информации

ВВЕДЕНИЕ

Предмет работы: энтропия и информация.

Цель работы: изучение энтропии и информации, а так же: какое применение имеют данные понятия к рискам.

В ходе данной работы предстоит решить несколько задач: рассмотрение понятия энтропии и информации, статистического и термодинамического смысла энтропии, так же определение данного понятия, как меры степени неопределенности, теоремы Шеннона о кодировании при наличии помех, использования энтропии в прогнозировании и применения энтропии к рискам.

Данная тема является злободневной, так как широко пользуются в физике, химии, биологии и теории информации. Клаузиузус первым же в 1865 году положил начало применению понятия энтропия на основе анализа тепловых машин. Трудно найти определения более общие для всех наук (не только естественных), чем энтропия и информация. Возможно, это связано с самими названиями. С тех пор энтропия многократно фигурировала в знаменитых спорах. Например, в исторической науке энтропия имеет не малое значение для объяснения экспликации феномена вариативности истории.

Существующему давно понятию “информация”, был придан математически точный смысл К.Шенноном. Это как приводило, так и приводит ко многим недоразумениям, поэтому очень важно уделить данному понятию должное внимание. Никакая информация, никакое знание не появляется сразу - этому предшествует этап накопления, осмысления, систематизации опытных данных, взглядов. Информация является общим компонентом для всех наук, она связывает между собой различные по характеру и содержанию науки, поэтому информационные процессы, которые изучаются информатикой, имеют место во многих предметных областях.

Нельзя ограничивать информационные процессы рамками вычислений и пассивного получения или преобразования информации. Эти процессы сложны и многообразны. Важно научить новое поколение это понимать. Информация не всегда связана с компьютером. Чаще всего именно человек активно ее обрабатывает. Умение в процессе обработки не только анализировать, но и синтезировать из отдельных крупинок информации целое - весьма ценное качество человека будущего.

Я согласна с необходимостью изучения понятия энтропии, синергетики, социальной информатики, эволюции и т.п.

1.      
Понятие энтропии

1.1.    Статистический смысл понятия энтропии

Вероятностное толкование понятия энтропии было дано в статистической физике Людвигом Больцманом. Введем для начала понятие термодинамической вероятности (W). Термодинамическая вероятность означает число возможных неотличимых микроскопических состояний системы реализующих определенное макроскопическое состояние этой системы.

Рисунок 1

Будем рассматривать простую систему всего из двух неотличимых молекул, которые находятся в некотором объеме. Мысленно разделим этот объем на две части, и, пронумеровав молекулы, найдем число способов, которым можно разместить их в этих двух частях.

Мы можем увидеть, что всего 4 способа, но два нижних неотличимы, так как молекулы 1 и 2 совершенно одинаковы, и соответствуют одному и тому же макроскопическому состоянию системы. Таким образом, мы имеем три различных макроскопических состояния системы, два из которых (верхних) , реализуемых только одним способом, а третье, нижнее двумя. Число способов-термодинамическая вероятность W. Все четыре способа равновероятны, поэтому большую часть времени система будет находиться в третьем состоянии.

Мы рассматривали только 2 молекулы. Число способов размещения n молекул в двух частях объема равно 2n, а число способов размещения всех молекул в одной половине объема равно 1. Энтропия термодинамического состояния системы определяется через термодинамическую вероятность:

= k·lnW

где k - постоянная Больцмана. Данное выражение называется принципом Больцмана [2].

В статистической термодинамике энтропия так же характеризует меру беспорядка и хаоса.

1.2.    Энтропия как мера степени неопределенности

Существование неопределённости связано с участием вероятностей в осуществлении событий. Устранение неопределённости есть увеличение вероятности наступления того, что задано как цель. Поэтому вероятности должны участвовать в математической формулировке величины устранённой неопределённости.

Первая удачная попытка реализовать определение информации на такой основе осуществлена в 1928 г. Л. Хартли. Пусть возможно в данных условиях n вариантов некоторого результата. Целью является один из них. Хартли предложил характеризовать неопределённость логарифмом числа n.

Количественная мера s полученной информации (устранённой неопределённости)выражается логарифмом отношения вероятностей:


Есть один недостаток-это определение справедливо только в приближении равновероятности всех исходов. Это выполняется далеко не всегда. В пределе в этом определении невероятному исходу приравнивается неизбежный. В 1948 г. это исправил К. Шеннон.

В качестве меры априорной неопределенности системы (или прерывной случайной величины ) в теории информации применяется специальная характеристика, называемая энтропией. Понятие об энтропии является в теории информации основным. Энтропией системы называется сумма произведений вероятностей различных состояний системы на логарифмы этих вероятностей, взятая с обратным знаком:


Энтропия обладает рядом свойств, которые оправдывают выбор данного понятия в качестве характеристики степени неопределенности. Во-первых, обращение энтропии в нуль объясняется достоверностью состояния системы при других-невозможных. Во-вторых, энтропия обращается в максимум при равновероятности состояний, а при увеличении числа состояний - увеличивается. Главное: свойство аддитивности.

Энтропию дискретного опыта удобно находить как вес следующего графа:

Рисунок 2.

Реальная ценность понятия энтропии определяется в первую очередь тем, что выражаемая им «степень неопределенности» опытов оказывается во многих случаях именно той характеристикой, которая играет роль в разнообразных процессах, встречающихся в природе, обществе и технике и так или иначе связанных с передачей и хранением каких-либо сообщений.


2.      
Понятие об информации

Понятие информации (informatio - разъяснение, осведомление, изложение) - это основное понятие не только в информатике (в информологии - области знаний, изучающей проявление информации, её представление, измерение и т.д.),но и в математике, в физике и др., плохо формализуется и структурируется. Из-за его объёмности, расплывчатости оно часто понимается неточно и неполно не только обучаемыми.

2.1.    Формы информации

Информация может существовать в пассивной (не актуализированной) и активной (актуализированной) форме.

Информация по отношению к окружающей среде (или к использующей ее среде) бывает трех типов: входная, выходная и внутренняя.

Информация по отношению к конечному результату проблемы бывает: исходная (на начало актуализации этой информации); промежуточная (от начала до завершения актуализации информации); результирующая (после завершения её актуализации).

Информация по изменчивости при её актуализации бывает: постоянная (не изменяемая никогда при её актуализации); переменная (изменяемая при актуализации); смешанная - условно - постоянная (или условно-переменная).

2.2.    Негативное влияние информации

Информация может оказаться и вредной, влияющей негативно на сознание, например, воспитывающей восприятие мира от безразличного или же некритического - до негативного, "обозлённого", неадекватного. Информационный поток -достаточно сильный раздражитель.

Пример. Негативной информацией - раздражителем может быть информация о крахе коммерческого банка, о резком росте (спаде) валютного курса, об изменении налоговой политики и др. [5].

2.3.      Измерение информации

2.3.1.   Мера Р. Хартли

Пусть имеется N состояний системы S или N опытов с различными, равновозможными, последовательными состояниями системы. Наименьшее число, при котором это возможно, называется мерой разнообразия множества состояний системы и задается формулой Р. Хартли:

H=klogаN

где k - коэффициент пропорциональности (масштабирования, в зависимости от выбранной единицы измерения меры), а - основание системы меры. Если измерение ведется в экспоненциальной системе, то k=1, H=lnN (нат); если измерение было произведено в двоичной системе, то k=1/ln2, H=log2N (бит); если измерение было произведено в десятичной системе, то k=1/ln10, H=lgN (дит).

Пример. Чтобы узнать положение точки в системе из двух клеток т.е. получить некоторую информацию, необходимо задать 1 вопрос: ("Левая или правая клетка?").

Узнав положение точки, мы увеличиваем суммарную информацию о системе на 1 бит (I=log22). Для системы из четырех клеток необходимо задать 2 аналогичных вопроса, а информация равна 2 битам (I=log24). Если же система имеет n различных состояний, то максимальное количество информации будет определяться по формуле: I=log2n.

Справедливо утверждение Хартли: если в некотором множестве X={x1, x2, ..., xn} необходимо выделить произвольный элемент xi X, то для того, чтобы выделить (найти) его, необходимо получить не менее logan (единиц) информации [4].

.3.2.   Мера К. Шеннона

Шеннон вывел это определение энтропии из следующих предположений: мера должна быть непрерывной; т. е. изменение значения величины вероятности на малую величину должно вызывать малое результирующее изменение энтропии.

Шеннон показал, что любое определение энтропии, удовлетворяющее этим предположениям, должно быть в форме:


где K - константа (и в действительности нужна только для выбора единиц измерения) [3].

Шеннон определил, что измерение энтропии (H = − p1 log2 p1 − … − pn log2 pn), применяемое к источнику информации, может определить требования к минимальной пропускной способности канала, требуемой для надежной передачи информации в виде закодированных двоичных чисел.

2.3.3. Термодинамическая мера

Информационно-термодинамический подход связывает величину энтропии системы с недостатком информации о внутренней структуре системы (не восполняемым принципиально, а не просто нерегистрируемым). При этом число состояний определяет, по существу, степень неполноты наших сведений о системе.

Поставим некоторый вопрос о состоянии термодинамической системы.

Пример. Предположим, что имеется термодинамическая система - газ в объеме V , который расширяется до объема 2V.

Рисунок 3. Газ объема V (a) расширяемый до 2V (б)

Нас интересует вопрос о координате молекулы m газа. В начале (а) мы знали ответ на вопрос и поэтому p1=1 (lnp1=0). Изменение (убыль) информации о состоянии системы будет равно ΔI = -k ln(2V /V) = -k ln 2 (нат). Мы получили известное в термодинамике выражение для прироста энтропии в расчете на одну молекулу, и оно подтверждает второе начало термодинамики. Энтропия - мера недостатка информации о микросостоянии статической системы.

Термодинамическая мера (энтропия) применима к системам, находящимся в тепловом равновесии. Для систем, далеких от теплового равновесия, например, живых биологических систем, мера-энтропия - менее подходящая [6].

2.3.4. Энергоинформационная (квантово-механическая) мера

Энергия (ресурс) и информация(структура) - две фундаментальные характеристики систем реального мира, связывающие их вещественные, пространственные, временные характеристики. Сейчас актуально говорить о биоэнергоинформационных мерах, отражающих механизм взаимосвязей биофизикоинформационных и вещественно-энергетических процессов в системе, в ноосфере [7].

3.  
Теорема Шеннона о кодировании при наличии помех

Теорема Шеннона - Хартли в теории информации <#"773090.files/image010.gif"> окиси этилена при 400, 500 и 600 К. Энтропия  окиси этилена составляет 242,4 Дж/(моль×К), значения теплоемкостей C0p,T при 400, 500 и 600 К приведены в табл. 2.

Решение: Вычислим энтропию окиси этилена при интересующих температурах. При этом средние величины теплоемкостей окиси этилена считаются величинами постоянными для каждого из температурных диапазонов (от 300 до 400, от 400 до 500 и от 500 до 600 К) по условию создания таблиц, допускающему линейную интерполяцию соседних значений в них.


= 242,74+(48,53+62,55)/2·(ln400 - ln300) = 258,72 Дж/(моль×К);

= 258,72+(62,55+75,44)/2·(ln500 - ln400) = 274,12 Дж/(моль×К);

= 274,12 +(75,44+86,27)/2·(ln600 - ln500) = 288,86 Дж/(моль×К).

Температурная зависимость  иллюстрируется рисунком 4.

Рисунок 4. Зависимость идеально-газовой энтропии

Таблица 2.

Т, К

 [1], Дж/(моль·К)

 [1], Дж/(моль·К)

 (расчет), Дж/(моль·К)

Погрешность, % отн.

298

242,42

48,28



300

242,76

48,53

242,74

0,00

400

258,65

62,55

258,72

0,03

500

274,01

75,44

274,12

0,04

600

288,78

86,27

288,86

0,03


4.2.    Применение к рискам

Проведение классификации рисков, поставка задачи, оценивание конкретного риска, проведение структуризации риска - важные пункты при рассмотрении некоторых задач. Риски необходимо учитывать при прогнозировании экономических последствий принимаемых решений, поведения потребителей и конкурентного окружения, внешнеэкономических условий и макроэкономического развития России, экологического состояния окружающей среды, безопасности технологий, экологической опасности промышленных и иных объектов. Большое число рисков связано с природными явлениями. Риски, которые связанны с недостаточными знаниями о природе, экологических бедствиях, играют большую роль (например,неизвестен точный объем полезных ископаемых в том или ином месторождении, а потому нельзя точно предсказать развитие добывающей промышленности и объем налоговых поступлений от ее предприятий). Метод энтропии часто используют для описания неопределенностей во время компьютерного и математического. Некоторые виды неопределенностей связаны с безразличными к организации силами -природными (погодные условия) или общественными (смена правительства). Разнообразные формальные методы оценки рисков и управления ими во многих случаях (реально во всех нетривиальных ситуациях) не могут дать однозначных рекомендаций. Поэтому процедуры энтропии естественно применять не только на конечном, но и на всех остальных этапах анализа рассматриваемого организацией проекта, используя при этом весь арсенал теории и практики энтропии.

энергоинформационный шеннон неопределенность статистический

ЗАКЛЮЧЕНИЕ

Физическая переменная энтропия первично возникла из задач описания тепловых процессов и затем широко использовалась во всех областях науки. Информация - знание, используемое для развития и совершенствования взаимодействия системы с окружающей средой. За развитием системы следом развивается информация. Существование новых форм, принципов, подсистем вызывает изменения в содержании информации, формах получения, переработки, передачи и использования. Система, осуществляемая целесообразное взаимодействие с окружающей средой, управляет или управляема из-за потоков информации.

Стабилизирование, адаптирование и восстановление системы может обеспечить оперативная информация, при нарушениях структуры и/или подсистем. На устойчивость и развитие системы влияет: на сколько информирована система ,процесс ее взаимодействие со средой. В наше время прогнозирование играет большую роль. Любое предприятие в процессе организации сталкивается с различными рисками, влияющими на ее состояние.

Существует достаточно примеров ситуаций, которые связаны с рисками: социальными, технологическими, экономическими, политическими, экологическими и другими, что подтверждает необходимость прогнозирования. Известны различные виды критериев, используемых в теории принятия решений в условиях неопределенности (риска). Возникает много противоречий по результатам критериев, следовательно необходимо применять энтропию в данной ситуации.

БИБЛИОГРАФИЯ

1.     Колмогоров А.Н. Теория информации и теория алгоритмов.

2.       Хартли Р. Передача информации// Теория информации и ее приложения.

.        Дмитриев В.Н.Прикладная теория информации.

Похожие работы на - Понятие энтропии и информации

 

Не нашел материал для своей работы?
Поможем написать качественную работу
Без плагиата!