Принцип работы оптоволоконных сканеров отпечатков пальцев

  • Вид работы:
    Контрольная работа
  • Предмет:
    Информатика, ВТ, телекоммуникации
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    1,3 Мб
  • Опубликовано:
    2013-05-21
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Принцип работы оптоволоконных сканеров отпечатков пальцев

Принцип работы оптоволоконных сканеров отпечатков пальцев

Идентификация по отпечаткам пальцев - на сегодня самая распространенная биометрическая технология. По данным International Biometric Group, доля систем распознавания по отпечаткам пальцев составляет 52% от всех используемых в мире биометрических систем, и по прогнозам объем продаж таких систем только в 2003 г. составит примерно 500 млн. долл. с тенденцией удвоения этой суммы каждый год.

Определенно сказать, когда начали использовать отпечатки пальцев для опознания, сложно. Археологи в ходе раскопок достаточно часто сталкиваются с теми или иными изображениями отпечатков пальцев на камне, однако нельзя утверждать, что они использовались для идентификации. Кроме того, с другой стороны доподлинно известно, что в Древнем Вавилоне и Китае оттиски пальцев делали на глиняных табличках и печатях, а в XIV веке в Персии отпечатками пальцев «подписывали» различные государственные документы. Это говорит о том, что уже в то время было отмечено: отпечаток пальца - уникальная характеристика человека, по которой его можно идентифицировать.

Следующий этап развития технологии - начало ее использования в криминалистике, к середине XIX века были сделаны первые предположения об уникальности отпечатков пальцев каждого человека и попытки классификации их по различным участкам папиллярного узора. Все это привело к появлению в 1897 г. (по некоторым сведениям 1899 г.) «системы Генри», первой получившей широкое распространение классификации отпечатков пальцев, разработанной англичанином Эдвардом Генри во время его пребывания в Индии. К концу XIX века появились первые алгоритмы сравнения отпечатков пальцев. В последующие 25 лет «система Генри» прошла адаптацию для использования на государственном уровне в различных странах и примерно с 1925 г. начала широко применяться в криминалистике по всему миру.

Однако, несмотря на широкое распространение методики распознавания отпечатков пальцев для идентификации человека, в первую очередь в криминалистике, до сих пор научно не доказано, что рисунок папиллярного узора пальца человека - абсолютно уникальная характеристика. И хотя за всю более чем столетнюю историю использования этой технологии в криминалистике и других областях не возникло ситуации, когда нашлось бы два человека с абсолютно одинаковыми отпечатками пальцев (ошибки программно-аппаратных реализаций алгоритмов распознавания в расчет не берем), уникальность отпечатков - это все же эмпирическое наблюдение.

Хотя, возможно, это тот самый случай, когда недоказанность гипотезы свидетельствует не о том, что она неверна, а о том, что она крайне сложно доказуема.

Во второй половине ХХ века в связи с появлением новых технических возможностей распознавание по отпечаткам пальцев начало выходить за рамки использования только в криминалистике и нашло свое применение в самых различных областях информационных технологий; в первую очередь такими областями стали:

системы управления доступом;

информационная безопасность (доступ в сеть, вход на ПК);

учет рабочего времени и регистрация посетителей;

системы голосования;

проведение электронных платежей;

аутентификация на Web-ресурсах;

различные социальные проекты, где требуется идентификация людей (благотворительные акции и т.д.);

проекты гражданской идентификации (пересечение государственных границ, выдача виз на посещение страны и т.п.).

Остановимся подробнее на внутренних аспектах работы современных биометрических систем распознавания по отпечаткам пальцев, на том, с чего начинается их работа и что является ядром любой такой системы.

Сканирование отпечатков пальцев

Получение электронного представления отпечатков пальцев с хорошо различимым папиллярным узором - достаточно сложная задача. Поскольку отпечаток пальца слишком мал, для получения его качественного изображения приходится использовать достаточно изощренные методы.

Все существующие сканеры отпечатков пальцев по используемым ими физическим принципам можно разделить на три группы:

оптические;

кремниевые;

ультразвуковые.

Рассмотрим каждую из них, укажем их достоинства и недостатки, а также ведущих производителей (иногда единственных), занимающихся реализацией каждого из методов.

Оптические сканеры - основаны на использовании оптических методов получения изображения. В настоящее время существуют следующие технологии реализации оптических сканеров:

1. FTIR-сканеры - представляют собой устройства, в которых используется эффект нарушенного полного внутреннего отражения (Frustrated Total Internal Reflection, FTIR). Рассмотрим данный эффект подробнее, чтобы пояснить полный алгоритм работы таких сканеров.

При падении света на границу раздела двух сред световая энергия делится на две части: одна отражается от границы, другая - проникает через границу раздела во вторую среду. Доля отраженной энергии зависит от угла падения. Начиная с некоторой его величины, вся световая энергия отражается от границы раздела. Это явление называется полным внутренним отражением. Однако при контакте более плотной оптической среды (в нашем случае поверхность пальца) с менее плотной (в практической реализации, как правило, поверхность призмы) в точке полного внутреннего отражения пучок света проходит через эту границу. Таким образом, от границы отразятся только пучки света, попавшие в такие точки полного внутреннего отражения, к которым не были приложены бороздки папиллярного узора поверхности пальца. Для фиксации получившийся таким образом световой картинки поверхности пальца используется специальная камера (ПЗС или КМОП в зависимости от реализации сканера).


Это явление называется полным внутренним отражением. В случае контакта более плотной оптической среды (поверхности пальца) с менее плотной в точке полного внутреннего отражения пучок света проходит через эту границу. Таким образом, от границы отразятся лишь пучки света, попавшие в определенные точки полного внутреннего отражения, к которым не был приложен папиллярный узор пальца. Для захвата полученной световой картинки поверхности пальца используется специальный датчик изображения (КМОП или ПЗС, в зависимости от реализации сканера).

Недостатки метода:

• Неэффективная защита от муляжей

• Чувствительность к загрязнениям

Ведущими производителями подобных сканеров являются компании BioLink, Digital Persona, Identix.

2. Оптоволоконные сканеры (fiber optic scanners) - представляют собой оптоволоконную матрицу, каждое из волокон которой заканчивается фотоэлементом. Чувствительность каждого фотоэлемента позволяет фиксировать остаточный свет, проходящий через палец, в точке прикосновения рельефа пальца к поверхности сканера. Изображение отпечатка пальца формируется по данным каждого из элементов.


Чувствительность каждого датчика позволяет фиксировать остаточный свет, проходящий через палец, в точке соприкосновения пальца с поверхностью матрицы. Изображение всего отпечатка формируется по данным, считываемым с каждого фотодатчика.

У данного метода гораздо больше плюсов:

• Высокая надежность считывания

• Устойчивость к обману

Однако у данного метода имеется также существенный недостаток - сложность его реализации:

Данный тип сканеров выпускается компанией Security First Corp.

3. Бесконтактные сканеры (touchless scanners) - в них не требуется непосредственного контакта пальца с поверхностью сканирующего устройства. Палец прикладывается к отверстию в сканере, несколько источников света подсвечивают его снизу с разных сторон, в центре сканера находится линза, через которую, собранная информация проецируется на КМОП-камеру, преобразующую полученные данные в изображение отпечатка пальца.


Ведущий производитель сканеров данного типа Touchless Sensor Technology.

4. Электрооптические сканеры (electro-optical scanners) - в основе данной технологии лежит использование специального электрооптического полимера, в состав которого входит светоизлучающий слой. При прикладывании пальца к сканеру неоднородность электрического поля у его поверхности (разность потенциалов между бугорками и впадинами) отражается на свечении этого слоя так, что он высвечивает отпечаток пальца. Затем массив фотодиодов сканера преобразует это свечение в цифровой вид.

Ведущий производитель сканеров данного типа Security First Corp (Ethentica).

5. Оптические протяжные сканеры (sweep optical scanners) - в целом аналогичны FTIR-устройствам. Их особенность в том, что палец нужно не просто прикладывать к сканеру, а проводить им по узкой полоске - считывателю. При движении пальца по поверхности сканера делается серия мгновенных снимков (кадров). При этом соседние кадры, снимаются с некоторым наложением, т.е. перекрывают друг друга, что позволяет значительно уменьшить размеры используемой призмы и самого сканера. Для формирования (точнее сборки) изображения отпечатка пальца во время его движения по сканирующей поверхности кадрам используется специализированное программное обеспечение.


Ведущий производитель сканеров данного типа Kinetic Sciences.

6. Роликовые сканеры (roller-style scanners) - в этих миниатюрных устройствах сканирование пальца происходит при прокатывании пальцем прозрачного тонкостенного вращающегося цилиндра (ролика). Во время движения пальца по поверхности ролика делается серия мгновенных снимков (кадров) фрагмента папиллярного узора, соприкасающегося с поверхностью. Аналогично протяжному сканеру соседние кадры снимаются с наложением, что позволяет без искажений собрать полное изображение отпечатка пальца. При сканировании используется простейшая оптическая технология: внутри прозрачного цилиндрического ролика находятся статический источник света, линза и миниатюрная камера. Изображение освещаемого участка пальца фокусируется линзой на чувствительный элемент камеры. После полной «прокрутки» пальца, «собирается картинка» его отпечатка.


Ведущие производители сканеров данного типа: Digital Persona, CASIO Computer, ALPS Electric.

Отметим несколько исторически сложившихся недостатков оптических сканеров и укажем, какие из них уже исправлены:

невозможность сделать их компактными, однако, как это видно из приведенных выше четырех из шести рисунков, в настоящее время это возможно;

оптические модули достаточно дороги из-за большого числа компонентов и сложной оптической системы. И эта проблема на сегодня решена: цена оптических сенсоров некоторых производителей сейчас 10 - 15 долл. (не путать с ценой сенсора в корпусе для конечного пользователя в комплекте с ПО);

оптические сканеры не устойчивы к муляжам и мертвым пальцам. Этому вопросу будет посвящена следующая часть статьи, однако уже сейчас стоит отметить, что практически все производители реализовали механизмы защиты от муляжей на том или ином этапе обработки сканируемого изображения.

Полупроводниковые сканеры

В основе полупроводниковых сканеров лежит использование для получения изображения поверхности пальца свойств полупроводников, изменяющихся в местах контакта гребней папиллярного узора с поверхностью сканера.

1. Емкостные сканеры

Емкостные сканеры (Сapacitive Scanners) являются сегодня наиболее распространенными полупроводниковыми устройствами для получения изображения отпечатка пальца. Их работа основана на эффекте изменения емкости p-n-перехода полупроводника при соприкосновении гребня папиллярного узора с элементом полупроводниковой матрицы. Существуют модификации емкостных сканеров, в которых каждый полупроводниковый элемент в матрице выступает в роли одной пластины конденсатора, а палец - в роли другой. При приложении пальца к датчику между каждым чувствительным элементом и выступом-впадиной папиллярного узора образуется емкость, величина которой определяется расстоянием между рельефной поверхностью пальца и элементом. Матрица этих емкостей преобразуется в изображение отпечатка пальца.

Достоинствами вследствие его популярности является:

• Низкая себестоимость

• Надежность

Недостатки:

• Неэффективная защита от муляжей

Ведущими производителями сканеров данного типа являются компании Infineon, STMicroelectronics, Veridicom.

2. Чувствительные к давлению сканеры (pressure scanners) - в этих устройствах используются сенсоры, состоящие из матрицы пьезоэлементов. При прикладывании пальца к сканирующей поверхности выступы папиллярного узора оказывают давление на некоторое подмножество элементов поверхности, соответственно впадины никакого давления не оказывают. Матрица полученных с пьезоэлементов напряжений преобразуется в изображение поверхности пальца.

Ведущий производитель сканеров данного типа: BMF.

3. Термосканеры (thermal scanners) - в них используются сенсоры, которые состоят из пироэлектрических элементов, позволяющих фиксировать разницу температуры и преобразовывать ее в напряжение (этот эффект также используется в инфракрасных камерах). При прикладывании пальца к сенсору по температуре прикасающихся к пироэлектрическим элементам выступов папиллярного узора и температуре воздуха, находящегося во впадинах, строится температурная карта поверхности пальца и преобразуется в цифровое изображение.

Ведущий производитель сканеров данного типа: Atmel.

Обобщенно говоря, во всех приведенных полупроводниковых сканерах используются матрица чувствительных микроэлементов (тип которых определяется способом реализации) и преобразователь их сигналов в цифровую форму. Таким образом, обобщенно схему работы приведенных полупроводниковых сканеров можно продемонстрировать следующим образом.

отпечаток палец сканер биометрический

4. Радиочастотные сканеры

В радиочастотных сканерах (RF-Field Scanners) используется матрица элементов, каждый из которых работает как миниатюрная антенна. Радиочастотный модуль генерирует сигнал низкой интенсивности и направляет его на сканируемую поверхность пальца. Каждый из чувствительных элементов матрицы принимает отраженный от папиллярного узора сигнал. Величина наведенной в каждой миниатюрной антенне ЭДС зависит от наличия или отсутствия вблизи нее гребня папиллярного узора. Полученная таким образом матрица напряжений преобразуется в цифровое изображение отпечатка пальца.

Достоинства:

• Поскольку анализируются физиологические свойства кожи, вероятность обмана данного сканера стремится к нулю

Недостатки:

• Неустойчивая работа при плохом контакте пальца

Известным производителем радиочастотных сканеров является компания Authentec.

5. Сканеры, использующие метод давления

Чувствительные к давлению сканеры (Pressure Scanners) в своей конструкции используют матрицу пьезоэлектрических элементов, чувствительных к нажатию. При прикладывании пальца к сканирующей поверхности гребешковые выступы папиллярного узора оказывают давление на некоторое подмножество элементов матрицы. Впадины кожного узора никакого давления не оказывают. Таким образом, совокупность полученных с пьезоэлектрических элементов напряжений преобразуется в изображение отпечатка пальца.

Данный метод имеет ряд недостатков:

• низкая чувствительность

• неэффективная защита от муляжей

• подверженность к повреждениям при чрезмерно прилагаемых усилиях

Чувствительные к давлению сканеры выпускает компания BMF.

6. Термосканеры

Термосканеры (Thermal Scanners) - в таких устройствах используются датчики, которые состоят из пироэлектрических элементов, позволяющих фиксировать разницу температуры и преобразовывать ее в напряжение.

При прикладывании пальца к сканеру по температуре прикасающихся к пироэлектрическим элементам выступов папиллярного узора и температуре воздуха, находящегося во впадинах, строится температурная карта поверхности пальца, которая в дальнейшем преобразуется в цифровое изображение.

Температурный метод имеет множество преимуществ:

• высокая устойчивость к электростатическому разряду

• устойчивая работа в широком температурном диапазоне

• эффективная защита от муляжей.

К недостаткам данного метода можно отнести то, что изображение быстро исчезает. При прикладывании пальца в первый момент разница температур значительна и уровень сигнала, соответственно, высок. По истечении короткого времени (менее одной десятой доли секунды) изображение исчезает, поскольку палец и датчик приходят к температурному равновесию.

Протяжные термо-сканеры (thermal sweep scanners) - разновидность термосканеров, в которых используется, как и в оптических протяжных сканерах, проведение пальца по поверхности сканера, а не просто прикладывание.

. Ультразвуковой метод

В данной группе пока существует только один метод, который так и называется. Ультразвуковые сканеры (Ultrasonic Scanners) сканируют поверхность пальца ультразвуковыми волнами. Расстояния между источником волн и гребешковыми выступами и впадинами папиллярного узора измеряются по отраженному от них эху.


Качество получаемого изображения в десятки раз лучше, чем у любого другого представленного на биометрическом рынке метода. Кроме того, данный способ практически полностью защищен от муляжей, поскольку позволяет помимо отпечатка папиллярного узора пальца получать информацию и о некоторых других характеристиках, например, о пульсе.

Недостатки:

• Высокая стоимость

Ведущим производителем сканеров данного типа является компания Ultra-Scan Corporation.

8. Емкостные протяжные сканеры (capacitive sweep scanners) - используют аналогичный способ покадровой сборки изображения отпечатка пальца, но каждый кадр изображения получается с помощью емкостного полупроводникового сенсора.

Ведущий производители сканеров данного типа: Fujitsu.

9. Радиочастотные протяжные сканеры (RF-Field sweep scanners) - аналогичны емкостным, но используют радиочастотную технологию.

Производит сканеры данного типа: Authentec.

Отметим основные недостатки полупроводниковых сканеров, хотя они характерны не для всех описанных методов:

сканеры, в частности, чувствительные к давлению, дают изображение низкого разрешения и маленького размера;

необходимость прикладывания пальца непосредственно к полупроводниковой поверхности (так как любой промежуточный слой влияет на результаты сканирования) ведет к ее быстрому изнашиванию;

чувствительность к сильным внешним электрическим полям, которые могут вызвать электростатические разряды, способные вывести сенсор из строя (относится в первую очередь к емкостным сканерам);

большая зависимость качества изображения от скорости движения пальца по сканирующей поверхности присуща прокаточным сканерам

Подводя итог написанному выше, хотелось бы отметить бурный рост числа методов сканирования отпечатков пальцев. Еще недавно существовало всего две технологии: оптическая FTIR и полупроводниковая емкостная со своими устойчивыми преимуществами и недостатками. Однако за последние десять лет технология распознавания настолько развилась, что сканеры последнего поколения не только преодолели практически все свои старые недостатки, но и приобрели ряд особо привлекательных черт, таких, как крайне малый размер и небольшая цена. Кроме этого, появилась принципиально новая ультразвуковая технология сканирования, которой еще только предстоит пройти все этапы становления. Но уже сейчас можно говорить о ее громадном потенциале.

Литература

1. Датчики отпечатков пальцев фирм Atmel и Fujitsu

. Задорожный B. Идентификация по отпечаткам пальцев

. PC Magazine/Russian Edition №2, 2004

Похожие работы на - Принцип работы оптоволоконных сканеров отпечатков пальцев

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!