Современные способы получения электрической энергии

  • Вид работы:
    Реферат
  • Предмет:
    Физика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    2,39 Мб
  • Опубликовано:
    2013-10-25
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Современные способы получения электрической энергии















Реферат

Современные способы получения электрической энергии

Тепловые конденсационные электрические станции

Тепловые конденсационные электрические станции преобразовывают энергию органического топлива вначале в механическую, а затем в электрическую. Механическую энергию упорядоченного вращения вала получают с помощью тепловых двигателей, преобразующих энергию неупорядоченного движения молекул пара или газа.

Все тепловые двигатели подразделяются: по виду используемого рабочего тела - пар или газ;

по способу преобразования тепловой энергии в механическую- поршневой или роторный (табл. 2.2). В поршневом способе для преобразования используется потенциальная энергия рабочего тела, получаемая при его нагревании. В роторном способе используется кинетическая энергия движущихся с большой скоростью частиц рабочего тела.

Способ работы

Рабочее тело


пар

газ

Поршневой

Паровая машина

Двигатель внутреннего сгорания

Роторный

Паровая турбина

Газовая турбина


Паровая машина была единственным двигателем, используемым в промышленности и на транспорте в XVIII и XIX вв. В настоящее время она практически не встречается, а широко применявшиеся в прошлом паровозы и пароходы почти полностью сняты с производства.

В настоящее время наибольшее распространение получили двигатели внутреннего сгорания, используемые на автомобильном транспорте. В стационарной энергетике двигатели внутреннего сгорания находят ограниченное применение. На современных мощных ТЭС устанавливают паровые турбины,. Первая паровая турбина, предназначенная для вращения электрического трехфазного генератора, была установлена на Эльберфельдской электростанции в 1899 г. С тех пор началось развитие мощных паротурбинных электростанций.

В качестве тепловых двигателей на электрических станциях используют также газовые турбины.

Для повышения эффективности работы тепловых двигателей стремятся максимально увеличить температуру рабочего тела и его давление до значений, приемлемых по условиям механической прочности конструкционных материалов.

В современных паровых установках, составляющих основу энергетики, используют пар при температуре- около 600°С и давлении 30 МПа. Для охлаждения рабочего тела (пара) обычно применяют холодную воду, которая понижает его температуру до 30- 40°С. При этом давление пара резко падает.

На рис. 2.3 схематически показаны стадии преобразования первичной энергии органического топлива в электрическую.


Основные процессы теплового цикла паровых установок, как было показано ранее, происходят в следующих элементах: в парогенераторах - подвод теплоты, в турбинах - расширение пара, в конденсаторах- отвод теплоты, в турбинах - расширение пара, в конденсаторах - охлаждение. С помощью насосов высокого давления производится сжатие, при котором конденсат нагнетается в парогенератор.

Схема тепловой станции, приведенная на рис. 2.1, более подробно показана на рис. 2.4 и 2.5


Работа станции происходит следующим образом. Из бункера 1 (рис. 2.4) уголь поступает в дробильную установку 2, где он превращается в пыль. Угольная пыль вместе с воздухом из воздуходувки 3' подается в топку S, Теплота, получаемая при сжигании угля, используется для преобразования воды в пар в трубах 4. Вода по змеевику 5 накачивается насосом 14 в барабан котла 5'. Пар, нагретый потоком горячих газов, уходящих в трубу 6, при высокой температуре и высоком давлении поступает сначала в первую ступень турбины 7, а затем во вторую ступень 8. В турбине энергия пара преобразуется в механическую энергию вращения ротора генератора 9, вырабатывающего электрическую энергию. Отработанный в турбине пар поступает в конденсатор 13, превращается в воду, которая насосом 14 подается в котел, и затем цикл превращения воды повторяется. Охлаждение пара в конденсаторе производится с помощью воды, забираемой из водоема (пруда или реки) 11, накачиваемой насосом 12 и вновь выбрасываемой в водоем. Продукты сгорания угля проходят через очистительные сооружения (не показанные на рис. 2.4), где выделяются зола, твердые частички несгоревшего угля и прочие примеси, а оставшиеся газы через трубу 6 выбрасываются в атмосферу. Электрическая энергия, получаемая от статора генератора, отдается в электрическую систему через выводы 10.

На рис. 2.5 показана общая схема получения теплоты и преобразования ее в электрическую энергию.


Рассмотрим дополнительно работу одного из основных элементов станции - парогенератора, в котором получают пар для питания станции. Современный парогенератор представляет собой сложное техническое сооружение больших размеров, высота которого соизмерима с высотой пятиэтажного дома. В топке парогенератора сжигается превращенный в мелкую пыль уголь, газ или распыленная нефть при температуре 1500-2000°С. Для наиболее полного сжигания топлива с помощью вентилятора в больших количествах подается подогретый воздух. Появляющаяся в процессе сгорания топлива теплота нагревает воду, превращает ее в пар и увеличивает его температуру и давление до расчетных значений. Использованные горячие газы дымососами вытягиваются из парогенератора и подаются в очистительные устройства, а затем направляются в дымовую трубу. Вода, подаваемая в парогенератор, предварительно очищается от примесей, содержание которых допускается в меньшем количестве, чем в питьевой воде. Очистка воды производится в специальных устройствах - питателях.

По конструктивному выполнению парогенераторы подразделяют на барабанные и прямоточные

В барабанном парогенераторе (рис. 2.6) имеется стальной барабан 3, в нижней части которого находится вода, а в верхней части - пар. По циркуляционной трубе 2 вода поступает в трубки экрана /, покрывающие стенки топки 7. Трубки экрана выполняют стальными, небольшого диаметра (примерно 40 мм снаружи и 32 мм внутри), для того чтобы они смогли выдержать большое давление пара. В крупном парогенераторе каждый час испаряются сотни тонн воды и поэтому трубки имеют общую длину до 50 км.


Чтобы повысить эффективность работы парогенератора, вода перед подачей в барабан нагревается в экономайзере 5, а воздух перед подачей в топку подогревается горячими газами в воздухоподогревателе 6. Выходящий из барабана пар дополнительно нагревается в пароперегревателе 4.

В барабанном парогенераторе происходит естественная циркуляция воды и пароводяной смеси за счет их разных плотностей. С увеличением температуры и давления пара уменьшается разность в плотностях воды и пара, что ухудшает их циркуляцию.

В прямоточном парогенераторе барабана нет. Циркуляция воды и пара создается насосами (рис. 2.7). Вода через водоподогреватель 3 поступает в трубы 1, расположенные в топке, превращается в пар, который затем подается в пароперегреватель 2 и далее в турбину. В воздухоподогревателе 4 происходит подогрев воздуха перед подачей его в топку. Прямоточные парогенераторы требуют качественного регулирования подачи воды. Кроме того, к питательной воде, используемой в парогенераторах этого типа, предъявляют очень высокие требования в отношении ее химической чистоты.


Прямоточные котлы получили широкое распространение, так как они дешевле барабанных. У барабанных парогенераторов при высоких давлениях (свыше 20 МПа) нарушается естественная циркуляция воды и пара.

Прямоточные парогенераторы стали применяться в нашей стране в 30-е годы по инициативе Л. К. Рамзина, который разработал ряд оригинальных конструкций котлов.

Турбины. Полученный в парогенераторах перегретый пар при температуре ~600°С и давлении 30 МПа по паропроводам передается в сопла. Сопла предназначены для преобразования внутренней энергии пара в кинетическую энергию упорядоченного движения молекул.

Если перед входом в сопло пар имел некоторую начальную скорость Со и начальное давление р1 (рис. 2.8), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения с1 и уменьшение давления до значения р2. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. Если турбина активная, то между ее рабочими лопатками расширения пара не происходит, следовательно, давление пара не меняется (рис. 2.8). Абсолютная скорость движения пара уменьшается от с1 до с2 вследствие вращения турбины со скоростью υ.

Конструктивно обычно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток. Сопловые и рабочие лопатки закреплены на окружностях одинакового радиуса.


У реактивной турбины или ступени происходит расширение пара, проходящего через каналы рабочих лопаток. В зависимости от показателей расширения пара в каналах турбины характеризуют ступенями реактивности. В настоящее время турбины выполняют многоступенчатыми, причем в одной и той же турбине могут быть как активные, так и реактивные (с различной степенью реактивности) ступени.

Изменение параметров пара в реактивной ступени турбины показано на рис. 2.9. В соплах турбины происходит частичное расширение пара до промежуточного давления р1. Дальнейшее расширение пара до давления p2 происходит в каналах между лопатками. Абсолютная скорость пара в сопле увеличивается до значения сi, а в каналах между лопатками уменьшается из-за вращения лопаток до значения С2.

Общий вид лопаток мощной паровой турбины показан на рис. 2.10.


В реактивных турбинах помимо центробежных сил, возникающих при изменении скорости движения пара, на лопатки действуют реактивные силы, вызванные расширением пара.

Появление реактивной силы можно показать на следующем примере. Пусть в бак, установленный на тележке (рис. 2.11), подведен пар под давлением, который в положении I равномерно действует на все стенки. Если убрать пробку, то равновесие бака сразу же нарушится. На правую стенку будет действовать неизменная сила, а сила, действующая на левую стенку, резко уменьшится, так как давление окружающей среды меньше, чем давление в баке. Пар устремится из бака, а тележка под действием реактивной силы начнет двигаться вправо (положение II).

(Конденсаторы. Пар, выходящий из турбины, направляют для охлаждения и конденсации в специальное устройство называемое конденсатором. Конденсатор представляет собой цилиндрический корпус, внутри которого имеется большое число латунных трубок. По трубкам протекает охлаждающая вода, поступающая в конденсатор обычно при температуре 10-15°С и выходящая из него при температуре 20-25°С. Пар обтекает трубки сверху вниз, конденсируется и снизу удаляется. Давление в конденсаторе поддерживается в пределах 3- 4 кПа, что достигается охлаждением пара.


Расход охлаждающей воды составляет примерно 50-100 кг на 1 кг пара. На электростанции мощностью 1 ГВт расходуется 40 м3/с охлаждающей воды, что примерно равно расходу воды в Москве-реке.


Если воду для охлаждения пара забирают из реки, подают в конденсатор, а затем сбрасывают в реку, то такую систему водоснабжения называют прямоточной. В случаях, когда воды в реке не хватает, сооружают пруд. С одной стороны пруда вода подается в конденсатор, а с другой стороны пруда сбрасывается нагретая в конденсаторе вода.

В замкнутых системах водоснабжения для охлаждения воды, нагретой в конденсаторе, сооружают градирни, представляющие собой устройства высотой примерно 50 м. Вода вытекает струйками из отверстий лотков, разбрызгивается и, стекая вниз, охлаждается. Внизу расположен бассейн, в котором вода собирается и затем насосами подается в конденсатор.

Тепловой баланс конденсационной электрической станции. На ТЭС происходят многократные преобразования энергии, сопровождающиеся потерями. Экономичность процесса преобразования химической энергии топлива в электрическую и потери на различных стадиях производства можно выявить из анализа теплового баланса электрической станции. Если за 100% принять химическую энергию, получаемую при сжигании угля в топках котлов, то в среднем только 25% этой энергии превращается в электрическую (рис. 2.12). Наибольшие потери теплоты происходят в конденсаторе. С охлаждающей водой конденсатора уносится 55% теплоты.

Теплоэлектроцентрали

Производство электрической энергии на ТЭС сопровождается большими потерями теплоты. В то же время многим отраслям промышленности таким, как химическая, текстильная, пищевая, металлургическая, и ряду других теплота необходима для технологических целей. Для отопления жилых зданий требуется в значительном количестве горячая вода.

В нашей стране больше ½ всего добываемого топлива расходуется на тепловые нужды предприятий. Ориентировочное представление о потреблении теплоты в промышленности можно получить, рассмотрев потребности в нем какого-либо конкретного предприятия. Например, на автомобилестроительном заводе приблизительно ¾ всей потребляемой теплоты идет на отопление, вентиляцию и бытовые нужды и только ¼ расходуется на производственные цели. Противоположная ситуация на азотнотуковом комбинате - предприятии химической промышленности. Здесь примерно ¾ всей потребляемой теплоты расходуется на производственные цели. Удовлетворение потребностей в теплоте сооружением небольших индивидуальных котельных, как правило, не экономично, так как такие установки работают с небольшими КПД и технически менее совершенны, чем крупные установки современных мощных ТЭС.

В этих условиях естественно использовать пар, получаемый в парогенераторах на тепловых станциях, как для выработки электроэнергии, так и для теплофикации потребителей. Электростанции, выполняющие такие функции, называются теплоэлектроцентралями.

Отработанный в турбинах конденсационных станций пар имеет температуру 25-30°С, поэтому он не пригоден для использования в технологических процессах на предприятиях.» Во многих производствах требуется пар, имеющий давление 0,5-0,9 МПа, а иногда и до 2 МПа длят приведения в движение прессов, паровых молотов, турбин. Иногда требуется горячая вода, нагретая до температуры 70-150°С.

Для получения пара с необходимыми для потребителей параметрами используют специальные турбины с промежуточными отборами пара. В таких турбинах, после того как часть энергии пара израсходуется на приведение в движение турбины и параметры его понизятся, производится отбор некоторой доли пара для потребителей. Оставшаяся доля пара далее обычным способом используется в турбине и затем поступает в конденсатор. Поскольку для части пара перепад давления оказывается меньшим, несколько возрастает расход топлива на выработку электроэнергии. Так, если при перепаде давления от 9000 до 4 кПа на выработку 1 кВт-ч электроэнергии требуется 4 кг пара, то при увеличении давления отработанного пара до 120 кПа необходимое количество пара составляет 5,5 кг. Однако такое увеличение расхода пара на выработку электроэнергии на ТЭЦ и связанное с этим увеличение расхода топлива в конечном счете оказываются меньшими по сравнению с расходом топлива в случае раздельной выработки электроэнергии и выработки ,теплоты на небольших котельных установках.


Благодаря более полному использованию тепловой энергии КПД ТЭЦ достигает 60-65%, а КПД КЭС -не более 40%. На рис. 2.13 приведен примерный тепловой баланс ТЭЦ.

Горячая вода и пар под давлением, достигающем в отдельных случаях 3 МПа, доставляются потребителям по трубопроводам. Совокупность трубопроводов, предназначенных для передачи теплоты, называется тепловой сетью. Экономия топлива связана с совершенствованием тепловой изоляции, поэтому повышение ее качества относится к одной из важнейших задач теплофикации.

Эффективность работы системы теплоснабжения во многом зависит от рационального размещения ТЭЦ, которые стремятся по возможности приблизить к крупным потребителям теплоты и электрической энергии, так как передача теплоты в виде пара неэкономична на расстояниях свыше 5-7 км. На решение вопроса о целесообразных местах расположения ТЭЦ в последнее время значительно влияет загрязнение ими окружающей среды.

Централизованное теплоснабжение на базе комбинированной выработки теплоты и электрической энергии имеет большие преимущества: обеспечивает основную долю потребности в теплоте промышленного и жилищно-коммунального хозяйства, уменьшает расходование топливно-энергетических ресурсов, а также материальных, и трудовых затрат в системах теплоснабжения.

Однако при максимальной централизации теплоснабжения на ТЭЦ можно выработать только 25-30% требуемой электроэнергии. Работа же конденсационных станций определяется только условиями выработки электроэнергии, что делает весьма благоприятными концентрацию больших электрических мощностей и позволяет быстро наращивать электроэнергетический потенциал страны. Поэтому в настоящее время и в будущем будут строиться конденсационные станции, несмотря на те преимущества, которые имеет выработка электроэнергии -на ТЭЦ. Развитию теплофикации в СССР придается большое значение. Так, уже в начале девятой пятилетки установленная электрическая мощность теплофикационных агрегатов превысила 45 млн. кВт, что составило около ⅓ установленной мощности всех ТЭС страны, работающих на органическом топливе.

Газотурбинные установки

По конструктивному исполнению и принципу преобразования энергии газовые турбины не отличаются от паровых. Экономичность работы газовых турбин примерно такая же, как и двигателей внутреннего сгорания, а при очень высоких температурах рабочего газа экономичность газовых турбин выше. Кроме того, газовые турбины более компактны, чем паровые турбины и двигатели внутреннего сгорания аналогичной мощности.

Особенно широкое распространение газовые турбины получили на транспорте. Применение газовых турбин в качестве основных элементов авиационных двигателей позволило в современной авиации достичь больших скоростей, грузоподъемности и высоты полета. Газотурболокомотивы на железнодорожном транспорте конкурентоспособны с тепловозами, оборудованными поршневыми двигателями внутреннего сгорания.

Современные газовые турбины в основном работают на жидком топливе, однако кроме жидкого топлива может использоваться газообразное: как естественный природный горючий газ, так и искусственный газ, получаемый особым сжиганием твердых топлив любых видов.


Представляет практический интерес перспектива сжигания угля в места его залегания. При этом под землю компрессорами в необходимом количестве подается воздух, производится специальное сжигание угля с образованием горючего газа, который затем подается по трубам к газотурбинным установкам. Впервые в мире такая опытная электростанция построена в Тульской области.


(Работа газотурбинной установки осуществляется следующим образом. В камеру сгорания / подается жидкое или газообразное топливо и воздух (рис. 2.14, с). Получающиеся в камере сгорания газы 2 с высокой температурой и под большим давлением направляются на рабочие лопатки турбины 3. Турбина вращает электрический генератор 4 и компрессор 5, необходимый для подачи под давлением воздуха 6 в камеру сгорания. Сжатый в компрессоре воздух перед подачей в камеру сгорания подогревается в регенераторе 7 отработанными в турбине горючими газами 8. Подогрев воздуха позволяет повысить эффективность сжигания топлива в камере сгорания.

Парогазовые установки

Отработанные в ГТУ газы имеют высокую температуру, что неблагоприятно сказывается на КПД термодинамического цикла. Совмещение газо- и паротурбинных агрегатов таким образом, что в них происходит совместное использование теплоты, получаемой при сжигании топлива, позволяет на 8-10% повысить экономичность работы установки, называемой парогазовой, и снизить ее стоимость на 25%. Парогазовые установки, использующие два вида рабочего тела - пар и газ - относятся к бинарным.

В них часть теплоты, получаемой при сжигания топлива в парогенераторе, расходуется на образование пара, который затем направляется в турбину (рис. 2.15), Охлажденные до температуры 650-700°С газы попадают на рабочие лопатки газовой турбины. Отработанные в турбине газы используются для подогрева питательной воды, что позволяет уменьшить расход топлива и повысить КПД всей установки, который может достичь примерно 44%,

Парогазовые установки могут работать также по схеме, в которой отработанные в газовой турбине га5ы поступают в паровой/котел (рис. 216 - обозначения те же, что и на рис. 2.15). Газовая турбина в этом случае служит как бы частью паросиловой установки. В камере сгорания газотурбинной установки сжигается 30-40% топлива, а в парогенераторе - остальное топливо.

Газотурбинные установки могут работать только на, жидком или газообразном топливе, так как продукты сгорания твердого топлива, содержащие золу и механические примеси, оказывают вредное влияние на лопатки газовой турбины.

В газотурбинных установках, так же как и в обычных паросиловых установках, тепловая энергия преобразуется в механическую в турбинах и механическая энергия - в электрическую в генераторах. Эта схема электромеханического преобразования энергии требует использования материалов, способных выдерживать большие механические нагрузки при больших частотах вращения вала турбины и высоких температурах. Ограниченная прочность материалов вынуждает использовать пар при температурах не выше 600°С, в то время как температура сжигаемого топлива достигает 2000°С.  Сокращение разницы этих температур позволит существенно повысить КПД тепловых установок.

Гидравлические электрические станции

Основой изучения работы ГЭС, преобразующих энергию воды в электрическую энергию, является наука, называемая гидравликой; она включает в себя гидростатику, изучающую равновесие жидкостей, и гидродинамику, изучающую движение жидкостей.

Мощность потока воды, протекающего через некоторое сечение - створ, определяется расходом воды Q, высотой между уровнем воды в верхнем по течению бассейне (верхнем бьефе) и уровнем воды в нижнем по течению бассейне (нижнем бьефе) в месте сооружения плотины. Разность уровней верхнего и нижнего бассейнов называется напором. Мощность потока в створе (кВт) можно определить посредством расхода (м3/с) и напора (м):

 

P=9,81QH.

В двигателях ГЭС можно использовать только часть мощности потока воды в створе из-за неизбежных потерь мощности в гидротехнических сооружениях, турбинах и генераторах, учитываемых коэффициентом полезного действия η. Таким образом, приближенно мощность ГЭС

 

P=9,81QHη.

Напор Н увеличивают на равнинных реках с помощью плотины (рис. 2.17, а), а в горных местностях строят специальные обводные каналы, называемые деривационными (рис. 2.17, б)

В гидравлических турбинах преобразуется энергия воды в механическую энергию вращения вала турбины. Турбина называется активной, если используется динамическое давление воды, и реактивной, если используется статическое давление при реактивном (см. рис. 2.11) эффекте.

В ковшовой активной турбине_(рис. 2.18, а)  потенциальная энергия гидростатического давления в суживающейся насадке - сопле - полностью превращается в кинетическую энергию движения воды.(Рабочее колесо турбины выполнено в виде диска, по окружности которого расположены ковшеобразные лопасти (рис. 2.18, б). Вода, огибая поверхности лопастей, меняет направление движения. При этом возникают центробежные силы, действующие на поверхности лопастей, и энергия движения воды преобразуется в энергию вращения колеса турбины.

Если скорость движения воды, вытекающей из турбины, равна нулю, то вся кинетическая энергия воды, не считая потерь, превращается в механическую энергию турбины. Внутри сопла расположена регулирующая игла (рис. 2.18), перемещением которой меняется выходное сечение сопла, а следовательно, и расход воды.


В реактивной гидравлической турбине на лопастях рабочего колеса преобразуется как кинетическая, так и потенциальная энергия воды в механическую энергию турбины. Вода, поступающая на рабочее колесо турбины, обладает избыточным давлением, которое по мере протекания воды по проточному тракту рабочего колеса. уменьшается. При этом вода оказывает реактивное давление на лопасти турбины и слагающая потенциальной энергии воды превращается в механическую энергию рабочего колеса турбины.

За счет кривизны лопастей изменяется направление потока воды, при котором, как и в активной турбине, кинетическая энергия воды в результате действия центробежных сил превращается в механическую энергию турбины. Рабочее колесо реактивной турбины в отличие от активной полностью находится в воде, т. е. поток воды поступает одновременно на все лопасти рабочего колеса. Различные конструкции рабочих колес реактивных турбин показаны на рис. 2.19.

У радиально-осевых турбин лопасти рабочего колеса имеют сложную кривизну, поэтому вода, поступающая с направляющего аппарата, постепенно меняет направление с радиального на осевое. Такие турбины используют в широком диапазоне напоров от 30 до 600 м. В настоящее время созданы уникальные раднально-осевые турбины мощностью 700 МВт.

Пропеллерные турбины обладают простой конструкцией и высоким КПД, однако у них с изменением нагрузки КПД резко уменьшается.


У поворотно-лопастных гидротурбин в отличие от пропеллерных лопасти рабочего колеса поворачиваются при изменении режима работы для поддержания высокого значения КПД.


Двухперовые турбины имеют спаренные рабочие лопасти, что позволяет повысить расход воды. Широкое применение их ограничено конструктивными сложностями. Сложная конструкция свойственна также д и а-тональным турбинам, у которых рабочие лопасти поворачиваются относительно своих осей.

Радиально-осевые турбины установлены на Братской, Красноярской ГЭС и др. Поворотно-лопастными турбинами оборудованы Куйбышевская, Волгоградская, Каховская и Кременчугская ГЭС и др.


На электрических станциях турбина и генератор связаны общим валом. Частоты их вращения не могут выбираться произвольно. Они зависят от числа пар полюсов ротора генератора и частоты переменного тока, которая должна соответствовать стандартной. Кроме того, необходимо учитывать, что при небольших частотах вращения турбины получаются громоздкими и дорогими. Чтобы получить скорости агрегатов, близкие к оптимальным, при больших напорах используют турбины с малыми значениями коэффициента быстроходности, а при небольших напорах - с большими значениями этого коэффициента.


Разнообразие природных условий, в которых сооружаются ГЭС, определяет разнообразие конструктивного исполнения турбин. Мощности турбин изменяются от нескольких киловатт до 500 МВт, а частота вращения изменяется от 16% до 1500 мин-1.

В последнее время стали применяться горизонтальные агрегаты (капсульные), в которых генератор заключен в герметичную капсулу, обтекаемую водой. КПД таких агрегатов выше (95-96%) благодаря лучшим гидравлическим условиям обтекания. Такими агрегатами оборудованы, например, Киевская и Каневская ГЭС.

При сооружении ГЭС обычно решают комплекс народнохозяйственных задач, в который помимо выработки электрической энергии входит регулирование стока воды и улучшение судоходства реки, создание орошаемых массивов, развитие энергоемких производств, использующих местное сырье, и т. д.

На равнинных реках ГЭС с плотинной схемой концентрации напора разделяются на два типа: русловые и приплотинные. При напоре до 30 м здание станции, как и плотина, воспринимает напор и располагается в русле реки (рис. 2.20, а). Такие ГЭС называются русловыми. Так как с ростом напора увеличивается объем строительных работ по сооружению зданий русловых гидроэлектростанций, то при напорах, превышающих 25-30 м, здание станции помещается за плотиной (рис. 2.20, б). Такие ГЭС называются приплотинными. На них весь напор воспринимается плотиной.

В настоящее время на равнинных реках сооружают станции, напор которых достигает 100 м, например на Братской ГЭС, построенной на Ангаре, и на Асуанской ГЭС, построенной в Египте.

На рис. 2.21 показана Волжская ГЭС имени В. И. Ленина, а на рис. 2.22 -Саяно-Шушенская ГЭС на р. Енисей, у которой высота плотины составляет 240 м и вода по водоводам поступает к 10 турбинам, вращающим электрические генераторы мощностью по 640 МВт каждый.

Аккумулирующие электрические станции

Производство электроэнергии на электрических станциях и ее потребление различными приемниками представляют собой процессы, взаимосвязанные таким образом, что в силу физических закономерностей мощность потребления электроэнергии в какой-либо момент времени должна быть равна генерируемой мощности.

При идеальном равномерном потреблении электроэнергии должна происходить равномерная работа определенного числа электростанций. В действительности работа большинства отдельных электроприемников неравномерна и суммарное потребление электроэнергии также неравномерно. Можно привести множество примеров неравномерности работы установок и приборов, потребляющих электроэнергию. Завод, работающий в одну или две смены, неравномерно потребляет электрическую энергию в течение суток. В ночное время потребляемая им мощность близка к нулю. Улицы и квартиры освещают только в определенные часы суток. Работа электробытовых приборов, вентиляторов, пылесосов, электрических печей, нагревательных приборов, телевизоров, радиоприемников, электробритв также неравномерна. В утренние и вечерние часы коммунальная нагрузка наибольшая.

График нагрузки некоторого района или города, представляющий собой изменение во времени суммарной мощности всех потребителей, имеет провалы и максимумы. Это означает, что в одни часы суток требуется большая суммарная мощность генераторов, а в другие часы часть _ генераторов или электростанций должна быть отключена или должна работать с уменьшенной нагрузкой. Число электростанций и их мощность определяются относительно непродолжительным максимумом нагрузки потребителей. Это приводит к недоиспользованию оборудования и удорожанию энергосистем. Так, снижение числа часов использования установленной мощности крупных ТЭС с 6000 до 4000 ч в год приводит к возрастанию себестоимости вырабатываемой электроэнергии на 30-35%.

Анализ тенденций в потреблении электрической энергии показывает, что в дальнейшем неравномерность потребления будет увеличиваться по мере роста благосостояния населения и связанного с ним увеличения коммунально-бытовой нагрузки, по мере повышения электровооруженности труда. Сокращение числа рабочих дней в неделе также способствует повышению неравномерности потребления электроэнергии. Такое положение характерно не только для нашей страны. В большинстве стран Западной Европы неравномерность в потреблении электроэнергии такова, что в течение часа изменение нагрузки достигает 30% от максимальной мощности и в перспективе также ожидается увеличение неравномерности. Кардинально изменить характер потребления электроэнергии очень трудно, так как он зависит от установившегося ритма жизни людей и ряда не зависящих от „ людей объективных обстоятельств. Например, нельзя изменить того факта,- что электрическое освещение нужно в вечерние часы с наступлением темноты.

Энергетики по возможности принимают меры по выравниванию графика суммарной нагрузки потребителей. Так, вводится дифференцированная стоимость электроэнергии в зависимости от того, в какой период времени она потребляется. Если электроэнергия потребляется в моменты максимумов нагрузки, то и стоимость ее устанавливается выше. Это повышает заинтересованность потребителей в таких перестройках работы, которые бы способствовали уменьшению электрической нагрузки в моменты максимумов потребления в энергосистеме. В целом возможности выравнивания потребления электроэнергии невелики. Следовательно, электроэнергетические системы должны быть достаточно маневренными, способными быстро изменять мощность электростанций. В промышленно развитых странах большая часть электроэнергии (80%) вырабатывается на ТЭС, для которых наиболее желателен равномерный график нагрузки. На агрегатах этих станций невыгодно проводить регулирование мощности. Обычные паровые котлы и турбины на этих станциях допускают изменение нагрузки всего на 10-15% .

Периодические включения и отключения ТЭС не позволяют решить задачу регулирования мощности из-за большой продолжительности этих процессов.

На запуск тепловой станции в лучшем случае требуются часы. Кроме того, работа крупных ТЭС в резко переменном режиме нежелательна, так как приводит к повышенному расходу топлива, повышенному износу теплосилового оборудования и, следовательно, снижению его надежности. Следует учесть также, что ТЭС с высокими параметрами пара имеют некоторые минимальные технически возможные рабочие мощности, составляющие 50-70% от, номинальной мощности оборудования. Все это относится не только к ТЭС, но и к АЭС. Поэтому в настоящее время и в ближайшем будущем дефицит в маневренных мощностях («пик» нагрузки) покрывается ГЭС, у которых набор полной мощности с нуля можно произвести за 1-2 мин. Однако в европейской части СССР степень использования экономически эффективных гидроэнергоресурсов уже превысила 40%. Оставшаяся неиспользованной часть ресурсов относится к периферийным районам и небольшим водотокам.

Регулирование мощности ГЭС производится следующим образом. В периоды времени, когда в системе имеются провалы нагрузки, ГЭС работают с незначительной мощностью и вода заполняет водохранилище. При этом запасается энергия.

С наступлением пиков включаются агрегаты станции и вырабатывается энергия.

Накопление энергии в водохранилищах на равнинных реках приводит к затоплению обширных территорий, что во многих случаях крайне нежелательно. Небольшие реки малопригодны для регулирования мощности в системе, так как они не успевают заполнить водой водохранилище.


Задачу снятия пиков решают гидроаккумулирующие станции (ГАЭС), работающие следующим образом (рис. 2.23). В интервалы времени, когда электрическая нагрузка в объединенных системах минимальна, ГАЭС перекачивает воду из нижнего водохранилища в верхнее и потребляет при этом электроэнергию из системы (рис. 2.23, о). В режиме непродолжительных «пиков» - максимальных значений нагрузки- ГАЭС работает в генераторном режиме и расходует запасенную в верхнем водохранилище воду.

В европейской части СССР возможно сооружение до 200 ГАЭС. В энергосистемах, расположенных в центральной, Северо-западной и южной Частях, где имеется наибольший дефицит маневренной мощности, естественные перепады рельефа позволяют сооружать станции с небольшим напором (80-110 м).

На первых ГАЭС для выработки электроэнергии использовали турбины Г и генераторы Г, а для перекачки воды в верхний бассейн - электрические двигатели Д и насосы Я (рис. 2.23,6). Такие станции называли четырехмашинными - по числу устанавливаемых машин. В силу независимости работы генератора и насоса иногда четырехмашинная схема оказывается экономически наиболее выгодной. Совмещение функций генератора и двигателя привело к трехмашинной компоновке ГАЭС (рис. 2.23, 0).

ГАЭС стали особенно эффективными после появления обратимых гидротурбин, выполняющих функции и турбин, и насосов (рис. 2.23, г). Число машин при этом сведено к двум. Однако станции с двухмашинной компоновкой имеют более низкое значение КПД из-за необходимости создавать в насосном режиме примерно в 1,3-1,4 раза больший напор на преодоление трения в водоводах. В генераторном режиме напор из-за трения в водоводах меньше. Для того чтобы агрегат одинаково эффективно работал как в генераторном, так и в насосном режимах, можно в насосном режиме увеличить его частоту вращения.

Применение разных частот вращения в обратимых генераторах привело к усложнению и удорожанию их конструкции.

КПД агрегата можно повысить также, устанавливая в насосном режиме более крутой угол наклона лопастей турбины.

При реверсивной работе агрегатов возникает ряд технических и эксплуатационных трудностей, например, связанных с охлаждением. Предназначенные для охлаждения вентиляторы успешно работают только в одном направлении вращения.

Перспективы применения ГАЭС во многом зависят от КПД, под которым применительно к этим станциям понимается отношение энергии, выработанной станцией в генераторном режиме, к энергии, израсходованной в насосном режиме.

Первые ГАЭС в начале XX в имели КПД не выше 40%, у современных ГАЭС КПД составляет 70-75%. К преимуществам ГАЭС кроме относительно высокого значения КПД относится также и низкая стоимость строительных работ. В отличие от обычных ГЭС здесь нет необходимости перекрывать реки, возводить высокие плотины с длинными туннелями и т. п. Ориентировочно на 1 кВт установленной мощности на крупных речных ГЭС требуется 10 м3 бетона, а на крупных ГАЭС - всего лишь несколько десятых кубометров бетона.

ГАЭС и ветровые электростанции, отличающиеся непостоянством вырабатываемой мощности, удачно сочетаются между собой При этом трудно рассчитывать на мощность ветровых станций в часы «пик» в энергосистеме. Если же вырабатываемую на этих станциях электроэнергию запасать на ГАЭС в виде воды, перекачиваемой в верхний бассейн, то выработанная на ветровых "электростанциях за какой-либо промежуток времени энергия может быть использована в соответствии с потребностями системы

Преимущества ГАЭС позволяют широко применять их для аккумулирования энергии.


Механические установки, аккумулирующие энергию. В пиковые часы потребления электроэнергии наряду с ГАЭС можно использовать супермаховики.

Супермаховик - это маховик, который можно разгонять до огромной скорости, не боясь его разрыва. Он состоит из концентрических колец, навитых из кварцевого волокна и насаженных друг на друга с небольшими зазорами, заполненными эластичным веществом типа резины для предохранения обода от расслоения. Супермаховик соединен с валом генератора и помещен в герметичный корпус, в котором поддерживается вакуум. Устройство работает как генератор, когда возрастает потребление энергии в системе, и как электродвигатель, когда энергию целесообразно аккумулировать. По некоторым расчетам, затраты на 1 кВт установленной мощности супермаховика меньше, чем при гидроаккумулировании. Разработан проект супермаховика массой 1,96 МН и диаметром 5 м, в котором предусматривается накопление энергии до 20 МВт-ч. Рабочая частота вращения супермаховика - 3500 мин-1.

Возможны аккумулирующие установки, создающие запас сжатого воздуха. Энергию этого воздуха Э» можно использовать для приведения в действие турбин, вращающих генераторы, которые в пик нагрузки будут отдавать энергию Эв в сеть.

Электрические установки, аккумулирующие электро-энергию. Такие установки в виде индуктивных или емкостных накопителей могут подключаться через выпрямитель к сети переменного тока. Индуктивные - получают заряд ЭL=LI2/2, где I - выпрямленный ток; L -индуктивность. Емкостной - заряжается до величины ЭC=CU2/2, где U - выпрямленное напряжение; С - емкость конденсаторов.

Для уменьшения потерь и длительного сохранения накопленной энергии применяются специальные мероприятия (охлаждение, уменьшение активного сопротивления, увеличение L и С и т. д.). Накопленная энергия ЭL или Эс отдается в сеть через преобразователь в виде энергии переменного тока.

Приливные электрические станции

Энергия морских приливов, или, как иногда ее называют, «лунная энергия», известна человечеству со времен глубокой древности. Эта энергия еще в далекие исторические эпохи использовалась для приведения в движение различных механизмов, в особенности мельниц. В Германии с помощью энергии приливной волны 'Орошали поля, в Канаде - пилили дрова. В Англии приливная водоподъемная машина служила в прошлом веке для снабжения Лондона водой.

Существует огромное количество остроумных проектов приливных технических установок. (Только во Франции к 1918 г. было опубликовано бол ее" 200 таких патентов. В начале XX в. предпринимались попытки сооружения мощных приливных электростанций. В США в 1935г. было начато строительство ПЭС Кводди мощностью 200 тыс. кВт. Вскоре строительство, на которое ушло 7 млн. долл., было прекращено из-за выявившейся высокой стоимости электроэнергии (на 33% больше стоимости на тепловой станции). По составленному в 1940г. в СССР проекту Кислогубская ПЭС вырабатывала бы электроэнергию стоимостью в 2 раза большей, чем у речных электростанций.

Приливные электрические станции (ПЭС) выгодно отличаются от ГЭС тем, что их работа определяется космическими явлениями и не зависит от многочисленных погодных условий, определяемых случайными факторами.

Наиболее существенный недостаток ПЭС - неравномерность их работы. Неравномерность приливной энергии в течение лунных суток и лунного месяца, отличающихся от солнечных, не позволяет систематически использовать ее в периоды максимального потребления в системах. Можно компенсировать неравномерность работы ПЭС, совместив ее с ГАЭС. В то время, когда имеется избыточная мощность ПЭС, ГАЭС работает в насосном режиме, потребляя эту мощность и перекачивая воду в верхний бассейн. Во время спадов в работе ПЭС в генераторном режиме работает ГАЭС, выдавая электроэнергию в систему. В техническом отношении такой npоект удачен, но дорогостоящ, так как требуется большая установленная мощность электрических машин.

Также удачно ПЭС может сочетаться с речной ГЭС, имеющей водохранилище. При совместной работе ГЭС увеличивает мощность при спаде мощности ПЭС и ее остановке; в то время как ПЭС работает с достаточно большой мощностью, ГЭС запасает воду в водохранилище. Таким образом, можно уменьшить как суточную, так и сезонную неравномерность работы ПЭС.

ПЭС работают в условиях быстрого изменения напора, поэтому их турбины должны иметь высокие КПД при переменных напорах. В настоящее время создана достаточно совершенная и компактная горизонтальная турбина двойного действия. Электрический генератор власть деталей турбины заключены в водонепроницаемую капсулу и весь гидроагрегат погружен в воду.

Магнитогидродинамическое преобразование энергии

К одной из центральных физико-технических задач энергетики относится создание магнитогидродинамикеских генераторов (МГД-генераторов), непосредственно преобразующих тепловую энергию в электрическую. Возможности практической реализации такого рода преобразования энергии в широких промышленных масштабах появляются в связи с успехами в атомной физике, физике плазмы, металлургии и ряде других областей.

Непосредственное преобразование тепловой энергии в электрическую позволяет существенно повысить эффективность использования топливных ресурсов.

Для современной электроэнергетики большое значение имеет открытый Фарадеем закон электромагнитной индукции, который утверждает, что в проводнике, движущемся в магнитном поле, индуцируется ЭДС. При этом проводник может быть твердым, жидким или газообразным. Область науки, изучающая взаимодействие между магнитным полем и токопроводящими жидкостями или газами, называется магнитогидродинамикой.

Еще Кельвин показал, что движение в устье реки соленой воды в магнитном поле Земли вызывает появление ЭДС. Схема такого МГД-генёратора Кельвина показана на рис. 3


магнитной индукции сила тока в проводниках 1, присоединенных к пластинам 2, опущенным в воду вдоль берегов реки, пропорциональна индукции магнитного поля. Земли и скорости течения соленой морской воды в реке. При изменении направления течения воды в реке изменялось также и направление электрического тока в проводниках между пластинами.

Принципиальная схема действия современного МГД-генератора (рис. 3.2) мало отличается от приведенной на рис. 3.1. В рассматриваемой схеме между металлическими пластинам, расположенными в сильном магнитном поле, пропускается струя ионизированного газа, обладающего кинетической энергией направленного движения частиц. При этом в соответствии с законом электромагнитной индукции появляется ЭДС, вызывающая протекание электрического тока между электродами внутри канала генератора и во внешней цепи. Поток ионизированного газа - плазмы - тормозится под действием электродинамических сил, возникающих при взаимодействии протекающего в плазме тока и магнитного потока, Можно провести аналогию между возникающими силами и силами торможения, действующими со стороны рабочих лопаток паровых и газовых турбин на частички пара или газа. Преобразование энергии и происходит путем совершения работы по преодолению сил торможения.

Если какой-либо газ нагреть до высокой температуры (я*3000°С), увеличив тем самым его внутреннюю энергию и превратив в электропроводное вещество, то при последующем расширении газа в рабочих каналах МГД-генератора произойдет прямое преобразование тепловой энергии в электрическую.

МГД-генератор с паросиловой установкой. Принципиальная схема МГД-генератора с паросиловой установкой показана на рис. 3.3. В камере сгорания сжигается органическое топливо, получаемые при этом продукты в плазменном состоянии с добавлением присадок направляются в расширяющийся канал МГД- генератора.


Сильное магнитное поле создается мощными электромагнитами. Температура газа в канале генератора должна быть не ниже 2000°С, а в камере сгорания 2500-2800°С. Необходимость ограничения минимальной температуры газов, покидающих МГД-генерато-ры, вызывается настолько значительным уменьшением электропроводности газов при температурах ниже 2000°С, что у них практически исчезает магнитогидро-динамическое взаимодействие с магнитным полем.

Теплота отработанных в МГД-генераторах газов вначале используется для подогрева воздуха, подаваемого в камеру сгорания топлива, и, следовательно, повышения эффективности процесса его сжигания. Затем в паросиловой установке теплота расходуется на образование пара и доведение его параметров до необходимых величин.

Выходящие из канала МГД-генератора газы имеют температуру примерно 2000°С, а современные теплообменники, к сожалению, могут работать при температурах, не превышающих 800°С, поэтому при охлаждении газов часть теплоты теряется.

На рис. 3.4 (см. форзац II) схематически показаны основные элементы МГД-электростанции с паросиловой установкой и их взаимосвязи.

Трудности в создании МГД-генераторов состоят в получении материалов необходимой прочности. Несмотря на статические условия работы, к материалам предъявляют высокие требования, так как они должны длительно работать в агрессивных средах при высоких температурах (2500-2800°С). Для нужд ракетной техники созданы материала, ^способные работать в таких условиях, однако они могут работать непродолжительное время - в течение минут. Продолжительность работы промышленных энергетических установок должна исчисляться, по крайней мере, месяцами.

Жаростойкость зависит не только от материалов, но и от среды. Например, вольфрамовая нить в электрической лампе при температуре 2500-2700°С может работать в вакууме или среде нейтрального газа несколько тысяч часов, а в воздухе расплавляется через несколько секунд.

Понижение температуры плазмы добавлением к ней присадок вызывает повышенную коррозию конструкционных материалов. В настоящее время созданы материалы, которые могут работать длительно при температуре 2200-2500СС (графит, окись магния и др-К однако они не способны противостоять механическим напряжениям.

Несмотря на достигнутые успехи, задача создания материалов для МГД-генератора пока не решена. Ведутся также поиски газа с наилучшими свойствами. Гелий с небольшой добавкой цезия при температуре 2000°С имеет одинаковую проводимость с продуктами сгорания минерального топлива при температуре 2500РС. Разработан проект МГД-генератора, работающего по замкнутому циклу, в котором гелий непрерывно циркулирует в системе.

Для работы МГД-генератора необходимо создавать сильное магнитное поле, которое можно получить пропусканием огромных токов по обмоткам. Во избежание сильного нагревания обмоток и потерь энергии в них сопротивление проводников должно быть по возможности наименьшим. Поэтому в качестве таких проводников целесообразно использовать сверхпроводящие материалы.

МГД-генераторы с ядерными реактора-м н. Перспективны МГД-генераторы с ядерными реакторами, используемыми для нагреваний газов и их термической ионизации. Предполагаемая схема такой установки показана на рис. 3.5.


Трудности создания МГД-генератора с ядерным реактором состоят в том, что современные тепловыделяющие элементы, содержащие уран и покрытые окисью магния, допускают температуру, не намного превышающую 600°С, в то время как для ионизации газов необходима температура, равная примерно 2000°С.

Первые опытные конструкции, МГД-генерато-ров имеют пока высокую стоимость. В будущем можно ожидать существенного снижения их стоимости, что позволит успешно использовать МГД-генераторы для покрытия пиков нагрузки в энергосистемах, т. е. в режимах относительно непродолжительной работы. В этих режимах КПД не имеет решающего значения и МГД-генераторы могут использоваться и без паросиловой пристройки.

В настоящее время в СССР сооружены мощные опытно-промышленные образцы МГД-преобразователей энергии, на которых ведутся исследования по совершенствованию их конструкции и созданию эффективных МГД-электростанций, конкурентоспособных с обычными электростанциями.

Геотермальные электростанции

Геотермальные электростанции в качестве источника энергии используют теплоту земных недр. Известно, что в среднем на каждые 30-40 м в глубь Земли температура возрастает на ГС. Следовательно, на глубине 3- 4 км вода закипает, а на глубине 10-15 км температура Земли достигает 1000-1200РС. В некоторых частях планеты температура горячих источников достаточно высокая и в непосредственной близости от поверхности. Эти районы наиболее благоприятны для сооружения геотермальных станций. Так, в Новой Зеландии на геотермальных станциях вырабатывается 40% всей электроэнергии, в Италии - 6%. Значительная доля электроэнергии приходится на такие станции и в ряде других стран.

В СССР для ряда районов, например Камчатки и Курильских островов, сооружение геотермальных станций может оказаться экономически оправданным. Так, на Камчатке успешно эксплуатируется опытно-промышленная геотермальная станция. Обсуждаются также возможности использования действущих вулканов на Курильских островах.

Структурная схема геотермальной электростанции для вулканических районов приведена на рис. 3.13. Схема электростанции для вулканических районов, располагающих ресурсами термальных вод с температурой 100°С на глубинах, доступных для современной буровой техники, приведена на рис. 3.14.


В более отдаленном будущем предполагается использование высокотемпературных слоев мантии (до 1000°С) для получения пара, в который будет превращаться вода, закачиваемая в искусственно созданные «вулканические» жерла. Разумеется, что получаемая таким образом энергия будет «чистой» и не будет влиять на биосферу (огромная масса мантии практически исключает влияние на ее состояние отбираемой теплоты).

Использование геотермальной энергии в современных условиях в значительной степени зависит от затрат, необходимых для вывода на поверхность геотермального теплоносителя в виде пара или горячей воды. Все действующие в настоящее время геотермальные электростанции располагаются в таких районах Земли, в которых температура теплоносителя достигает 150-360°С на глубинах, не превышающих 2-5 км.


В последнее время более интенсивно проводятся поиски участков Земли с минимальной глубиной расположения геотермальных ресурсов. На таких участках рентабельно создание систем, осуществляющих теплоснабжение и получение электрической энергии.

Практически все геотермальные источники содержат примеси в виде различных химических элементов. Химическая активность подземных теплоносителей, в составе которых могут быть ртуть, мышьяк, вызывает отрицательные экологические эффекты, а также усиливает коррозию конструкционных материалов энергетического оборудования. Извлечение химических элементов до отбора теплоты от теплоносителя позволяет снизить экологическое влияние, уменьшить химическую коррозию и получить пенное сырье для химической промышленности. Так, в некоторых скважинах Южно-Каспийского бассейна в 1 л воды содержится, мг: свинца - 77, цинка - 5, кадмия - 2, меди - 15.

В настоящее время геотермальные источники больше используются для теплоснабжения, чем для выработке электрической энергии. Это объясняется как техническими трудностями в работе геотермальных электростанций, так и высокой Стоимостью их в расчете на единицу установленной мощности.

Ветровые электростанции

Человек начал использовать энергию ветра еще до того, как научился «укрощать» реки. Энергия ветра отличается своей доступностью и дешевизной. Ее годовые потенциальные запасы на Земле огромны. Они в 100 раз превышают запасы гидроэнергии всех рек земного шара и составляют, таким образом, около 3300-1012 кВт-ч. Правда, считается возможным практически использовать лишь 10-20 % этих запасов. Но и это много. В некоторых районах Земли энергетический потенциал ветровой энергии соизмерим с энергией солнечного излучения.

СССР также обладает большими потенциальными запасами энергии ветра, равными в мощностном эквиваленте примерно 11-109 кВт, что в 40 раз больше установленной мощности всех электростанций страны на начало 1981 г.

Принцип использования ветровой энергии прост, широко известен и не нуждается в пояснении. Отметим, однако, что ветровой поток, воспринимаемый ветровым колесом, определяется лишь его диаметром и не зависит от числа лопастей.

Установлено, что мощность воздушного потока NB.n, кВт, проходящего через сечение площадью F, перпендикулярное направлению этого потока, выражается формулой

Nвп=0,0049pv3F,(8.1)

где v-скорость воздушного потоки, mj/c; F - площадь сечения, м2; р - плотность воздуха, зависящая от его температуры и атмосферного давления, кг/м3.

Мощность, развиваемая ветроэнергетической установкой (ВЭУ), отличается от мощности, развиваемой воздушным потоком, потерями, связанными с преобразованием механической энергии в электрическую (в редукторе и генераторе), а также потерями энергии ветрового потока в процессе взаимодействия его с лопастями ветрового колеса. Последние определяются так называемым коэффициентом использования энергии ветра. Выражая площадь F в (8.1) через диаметр ветрового колеса D, м, получаем мощность ветроэнергетической установки, кВт:

ЛГвэу = 0,00386pvD2ξηpηr,(8.2)

где ηp и ηr - к. п. д. соответственно редуктора и генератора.

Будем называть ветровой электростанцией (ВЭС) совокупность нескольких ВЭУ.

Подсчитано, что коэффициент использования энергии ветра для крыльчатых ветродвигателей доходит до 0,48, а общий к. п. д. ветроустановки имеет несколько меньшее значение. Однако неравномерность скорости ветра, неопределенность времени возникновения и продолжительности его, пространственная рассредоточенность ветровой энергии долгое время не позволяли широко использовать ее в системной энергетике. В условиях энергетического кризиса в ряде стран в последнее время рассматривается ветроэнергия с новых энергоэкономических позиций, в частности с позиций возможности получения дополнительной выработки электроэнергии и соответствующей экономии органического топлива.

Для устранения влияния непостоянства ветровой энергии много усилий направляется на изыскание способов ее резервирования, в частности использование аккумулирования. В последнее время предложено множество разнообразных аккумуляторов энергии, в том числе устройств для электролиза воды. Получаемые кислород и водород хранятся под давлением в изолированных резервуарах и при необходимости могут быть использованы (например, в топливных элементах).

Известны также механические, пневматические, электрохимические, тепловые, гидравлические и другие аккумуляторы. Все чаще обсуждаются в печати заманчивые перспективы совместной работы ВЭС и ГАЭС.

Следует сказать, что аккумулирование энергии, видимо, в ближайшее время не сможет снять все недостатки ВЭС, связанные с непостоянством ветровой энергии, и работа таких электростанций в энергосистеме будет иметь ограничения. Поэтому ведутся исследования, направленные па дальнейшее совершенствование аэродинамических, механических и электрических характеристик отдельных ветроэнергетических установок для работы их в составе ВЭС в энергетической системе. Однако последняя не всегда заинтересована в получении от ВЭС мощности и электроэнергии. Так, в ночное время (см. § 3.5) современные энергосистемы смогут использовать ВЭС, очевидно, лишь в том случае, если это не повлечет за собой недопустимого снижения нагрузки на ТЭС. Вместе с тем это не исключает возможность работы ВЭС в ночное время на потребителей, функционирующих в режиме аккумуляторов энергии.

Заслуживает внимания и работа ВЭС в энергосистеме по свободному графику. В этом случае энергетическая система будет играть роль демпфирующего аккумулятора в пределах возможности временного снижения ее нагрузочного резерва (см. § 8.4). Работая в таком режиме, ВЭС позволяет или экономить топливо в системе (за счет соответствующего снижения нагрузки ТЭС), или получать дополнительную выработку электроэнергии.

В результате проведенных исследований по оптимизации профиля лопастей ВЭУ удалось повысить выработку электроэнергии ветрового колеса примерно в 2 раза по сравнению с «ветряками» 60-х годов. В настоящее время при аэродинамически совершенных ВЭУ фронт ветра площадью 2,6-106 м2 может обеспечить мощность 150 МВт при скорости-ветра не менее 6-8 км/ч. Однако при создании современных ВЭС пока еще повсеместно ориентируются на небольшие единичные мощности агрегата (0,2-3 МВт).

При сооружении мощных ВЭС (несколько сотен меговатт), предназначенных для работы в энергетических системах, приходится учитывать ряд особенностей, вытекающих из специфики работы ветрового колеса отдельно взятой ВЭУ. К числу их следует отнести, прежде всего, размещение ветроэнергетических установок по территории ВЭС. Дело в том, что ветровые колеса ВЭУ оказывают взаимовлияние на формирование воздушных потоков всей ВЭС, создавая взаимопомехи, приводящие к потерям энергии. Поэтому размещение ВЭУ должно производиться при условии минимума взаимовлияния ВЭУ при любых возможных направлениях ветра и с учетом возможно меньшей отчуждаемой ими территории. Учет этих противоречивых требований вызывает некоторые затруднения.

В настоящее время не ясен вопрос об экономической эффективности системной ветроэнергетики, но не вызывает сомнений, что эта эффективность со временем, по мере повышения цен на топливо, будет расти. Сейчас ВЭС конкурентоспособны лишь с небольшими дизельными и тепловыми электростанциями, работающими на привозном топливе.

Ветровые электростанции не производят никаких вредных выбросов в окружающую среду, и в этом отношении ветроэнергетика экологически абсолютно «чиста». Однако негативное влияние ВЭС на окружающую среду все же проявляется. Речь идет, прежде всего, о том, что<для сооружения ВЭС необходимо отводить определенные территории, измеряемые для мощных ВЭС десятками квадратных километров, которые не только изменят свой ландшафт, но и в ряде случаев станут непригодными для других целей. Шумовой эффект, создаваемый ВЭС, может существенно повлиять на фауну прилегающей территории. Мощное вращающееся ветровое колесо создает экранирующее действие, аналогичное тому, которое оказывает возвышенность площадью несколько десятков квадратных километров и высотой 150-200 м. При работе ВЭС возникают помехи для приема телевизионных и радиопередач Есть и другие формы воздействия ВЭС на окружающую среду.


Несмотря на недостатки ветроэнергетики, перспективы использования ВЭС в ряде развивающихся и промышленно развитых стран оцениваются довольно высоко. Так, до данным доклада Шведского института метеорологии и гидрологии к 1990 г. с помощью ВЭС будет вырабатываться около 20 % всей электроэнергии страны (по другим данным-10%). Исследуется возможность использования энергии ветра при мощности ВЭС до 400 МВт.

По данным американских исследований энергетический потенциал ветров над континентальной частью и побережьем США в 10 раз превышает прогнозные потребности США в электроэнергии в 2000 г., т. е. если бы в США начали широко использовать энергию ветра, то к 2000 г. 20 % потребности США в электроэнергии можно было покрыть за счет ВЭС.

В США в настоящее время исследования в области ветроэнергетики проводятся в рамках национальной программы. Их целью является разработка и сооружение опытных образцов трех типов быстроходных ВЭУ с ветровыми колесами диаметром 38, 60 и 90 м. В первом случае ВЭУ развивают мощность 100-200 кВт, во втором-500-2000 кВт и в третьем -2500-3000 кВт. В настоящее время построено и находится в опытной эксплуатации несколько ветроэнергетичеких установок мощностью от 100 до 2500 кВт. Продолжаются исследования по определению технико-экономических показателей при работе ВЭС большой мощности в энергетических системах.

Принцип действия такого агрегата сводится к следующему. Воздушный поток, поступая внутрь башни через открытые с наветренной стороны створки в тангенциальном направлении, обтекает цилиндрические стенки башни, в которых жалюзи закрыты, и, приобретая круговое спиральное движение, завихряется. При этом окружная скорость слоев по мере приближения к выходу из башни все время увеличивается вследствие уменьшения радиуса вращения. В результате этого внутри башни образуется вихрь, в центре которого создается область пониженного давления - «стержень». Наружный воздух через проемы на боковых стенках конусного основания под действием избыточного давления устремляется в основание «стержня» и, перемещаясь вверх, вращает лопасти воздушной турбины, а следовательно, и вал генератора.

Такой вихревой ветродвигатель может работать при слабом ветре и даже при его отсутствии. В этом случае достаточно иметь перепад температур на дне и в верхней части башни не менее 10° С. Для подогрева воздуха в основании башни устанавливается подогревательная камера, в которой используется, например, теплая вода конденсаторов ТЭС, солнечная энергия и т. п. Подобный ветровой двигатель может обеспечить значительную единичную мощность и противостоять разрушительным воздействиям ураганных ветров (при открытых створках ветер, продувая башню насквозь, не оказывает давления на ее стенки).

Широкий интерес к ветроэнергетике наблюдается в ФРГ, Японии, Австралии, Дании, Нидерландах и многих других странах. Во многих проектах ВЭС предусмотрены различные средства аккумуляции энергии для обеспечения бесперебойной подачи энергии при недостаточной скорости ветра, что удорожает установку. Себестоимость получаемой электроэнергии пока еще выше, чем в среднем на ТЭС и тем более на ГЭС. В настоящее время разрабатываются новые типы ВЭУ мощностью в десятки и сотни мегаватт.

В Советском Союзе ветроэнергетика начала развиваться в 20-е годы, когда в ЦАГИ был организован отдел ветродвигателей. Еще до Великой Отечественной войны были сконструированы разнообразные ветросиловые установки. В 1931 г. в Крыму была построена опытная ВЭС мощностью 100 кВт. Но во время войны станция была разрушена. В 1938 г. на вершине Аи-Петри было начато строительство ВЭС мощностью 5 МВт, но война не дала возможности завершить ее строительство.

В настоящее время в Советском Союзе ведутся интенсивные работы по созданию ВЭУ различного назначения. Разработано более 10 типов ветродвигателей малой мощности, используемых, главным образом, в сельском хозяйстве. Строятся ВЭС мощностью от 400 до 1250 кВт. Одна из таких электростанций построена, например, и колхозе «Авангард» близ Целинограда.

Имеется предложение о размещении ВЭС на бычках плотин ГЭС. Свободные площади позволяют установить на них фермы с ветровым колесом диаметром около 30 м. На высоте нескольких десятков метров (высота плотины плюс, по крайней мере, полтора размера диаметра колеса), а то и нескольких сотен метров (Нурекская, Братская, Саяно-Шушенская, Токтогульекая, Ингурская ГЭС и др.) всегда дуют достаточно интенсивные ветры. Расчеты показывают, что можно получить дополнительную мощность в десятки мегаватт. Правда, есть и трудности, вызываемые взаимовлиянием ВЭУ, снижающим их энергетическую эффективность, и особенно тогда, когда направление ветра совпадает с осью плотины или близко к ней.

Хотя система получит в общем незначительную дополнительную мощность, ню эта мощность может быть направлена на аккумулирование гидроэнергии, использование которой, конечно, будет более эффективным, чем ветровой.

Классификация электрических станций

Электрической станцией называется комплекс оборудования и устройств, назначением которого является преобразование энергии природного источника в электрическую энергию (и теплоту).

Электрические станции разделяют по следующим признакам:

)по виду используемой энергии на:

гидроэлектростанции (ГЭС), в которых электрическая энергия вырабатывается за счет механической энергии воды рек;

тепловые электростанции (ТЭС), использующие органическое топливо;

атомные электростанции (АЭС), в которых используется ядерное горючее;

2)по виду отпускаемой энергии:

тепловые электростанции, отпускающие потребителям только электроэнергию, - конденсационные электростанции (КЭС);

тепловые электростанции, отпускающие электрическую и тепловую энергию, - теплоэлектроцентрали (ТЭЦ); источником отпускаемого тепла является отработавший пар или отработавший газ тепловых двигателей;

)по виду теплового двигателя: электростанции с паровыми турбинами - паротурбинные ТЭС, которые являются основным видом электростанций в нашей стране и за рубежом;

электростанции с газовыми турбинами - газотурбинные ТЭС;

электростанции с парогазовыми установками - парогазовые ТЭС;

электростанции с двигателями внутреннего сгорания - ДЭС;

4)по назначению электростанций: районные электростанции (общего пользования), обслуживающие все виды потребителей энергосистемы и являющиеся самостоятельными производственными предприятиями: районные конденсационные электростанции (ГРЭС), районные теплоэлектроцентрали (ТЭЦ), коммунальные электростанции;

промышленные электростанции, входящие в состав производственных предприятий и предназначенные в основном для энергоснабжения предприятий, а также прилегающих к ним городских и сельских районов.

Паротурбинные электростанции разделяют также и по другим, менее характерным признакам, а именно:

1)по общей и единичной мощности агрегатов: малой мощности - с агрегатами до 25 МВт; средней мощности -с агрегатами 50-100 МВт; большой мощности - с агрегатами более 200 МВт. Такое разделение является условным, так как мощности ТЭС и ее агрегатов неизменно возрастают;

2)по начальным параметрам пара: низкого давления - до 3,92 МПа; высокого давления - до 12,7 МПа; сверхвысокого давления - до 23,7 МПа. Такое разделение также условно, так как параметры пара все время повышаются;

3)по технологической схеме соединений парогенераторов и турбогенераторов: блочные электростанции, на которых каждый турбоагрегат при соединен к одному определенному парогенератору; неблочные электростанции, в которых турбоагрегат соединен главными трубопроводами со всеми парогенераторами или ее части (очереди).

Солнечные электростанции

Солнце - источник жизни на нашей планете и основной источник всех видов получаемой на ней энергии. В настоящее время большое внимание уделяется прямому использованию солнечной энергии. Заманчиво создание солнечных элементов для превращения энергии солнечной радиации в электрическую. В солнечных элементах используется явление фотоэффекта, т. е. вырывание электронов из тела под действием света.

Фотоэффект открыт Герцем в 1887 г. и детально исследован А. Г. Столетовым в 1888 г. Несмотря на то что фотоэффект известен давно, природа его пока полностью не изучена. Практическое использование фотоэффекта для получения электроэнергии стало возможным в последнее время в связи с применением полупроводников.

При соприкосновении полупроводников, имеющих электронную (n-типа) и дырочную (р-типа) проводимости, на границе образуется контактная разность потенциалов вследствие диффузии электронов. Если полупроводник с дырочной проводимостью освещается, то его электроны, поглощая кванты света, переходят на полупроводник с электронной проводимостью. В Замкнутой ~ цепи при этом образуется электрический ток.


В настоящее время наиболее совершенны кремниевые фотоэлементы, на которые действуют как направленные, так и рассеянные солнечные лучи. Кремниевые фотоэлементы могут одинаково успешно работать зимой и летом. Зимой снижение светового потока компенсируется увеличением КПД за счет понижения температуры. КПД кремниевых фотоэлементов достигает примерно 15%.

Из-за сложной технологии изготовления полупроводников и их большой стоимости кремниевые фотоэлементы применяются пока на уникальных установках, например на спутниках Земли. В будущем можно ожидать более широкое применение фотоэлектрических генераторов, преобразующих большие потоки энергии солнечной радиации.

Солнечная энергия может быть использована также в фотоэлектрических процессах, протекающих подобно естественному фотосинтезу органических веществ. Практическое освоение таких процессов позволило бы получать необходимую человечеству энергию и решить актуальную проблему истощения запасов органического топлива.

Огромное количество солнечной энергии, приходящей на Землю (примерно 0,15 МВт-ч на 1 м2 поверхности в год), в современных условиях затруднительно использовать из-за низкой плотности солнечной радиации и ее зависимости от состояния атмосферы (облачности) и времен» года. Возможно создание солнечных станций на искусственных спутниках Земли. В этом случае солнечная энергия будет аккумулироваться в течение 24 ч, а следовательно, эффективность работы станции не будет зависеть от облачного покрова. Передача энергии на Землю должна осуществляться по каналу УКВ. Принципиальная схема солнечной станции на искусственном спутнике и ее общий вид представлены на рис. 3.16, а, б. Размеры спутника-коллектора солнечной энергии (рис. 3,16, а) могут быть различны (от 20 до 100 км2) в зависимости от мощности станции.

Энергия от солнечных элементов космической станции должна передаваться на Землю с помощью антенны в виде достаточно узкого пучка УКВ-волн (длина волны «10 см). Приемная антенна на Земле будет принимать этот пучок энергии, который затем должен будет преобразовываться в энергию промышленной частоты.

Ожидается, что весь процесс будет характеризоваться достаточно высоким КПД. В настоящее время КПД преобразования энергии солнечными элементами на монокристаллах составляет 11%. Предполагается, что путем усовершенствования кремниевых элементов может быть достигнут КПД, равный 20%.

Расчетные значения КПД преобразования энергии на космических станциях приведены в табл. 3.3

Производство и передача электроэнергии солнечной электростанцией

КПД


Достигнутые в настоящее время

Ожидаемые при существующей технологии

Ожидаемые за счет дальнейших разработок

Генерация УКВ-потока энергии Передача энергии с выхода генератора до створа антенны Улавливание и детектирование

76,7  94,0 64,0

85,0  94,0 75,0

90,0  95,0 90,0

Общий КПД

26,5

60,0

77,0


Космические солнечные станции могут быть спроектированы на полезную электрическую мощность 3^-20 ГВт и более. Размер солнечной батареи станции с полезной выходной мощностью 5 ГВт можно оценить исходя из КПД, равного 15%. Соответствующая такой станции суммарная поверхность солнечной батареи равна 20 км2. При этом передающая антенна должна иметь диаметр 1 км, приемная антенна - диаметр 7-10 км. Плотность пучка УКВ-волн со станции на Землю в этом случае составит всего 'Д нормальной плотности солнечной энергии, поэтому он не должен представлять опасности ни для летательных средств, ни для птиц. Вопрос, связанный с радиопомехами, не должен стать серьезной проблемой. Технические проблемы состоят только в улучшении достигнутой технологии и совсем не требуют разработки принципиально новых решений.

Большое внимание уделяется перспективе использования солнечной энергии в промежуточном процессе получения топлива. Так, энергия крупных солнечных станций может быть использована для синтеза топлива на основе углеводорода, например метанола из известняка и воды.

Наличие благоприятных условий во многих странах позволяет использовать для практических целей солнечную энергию. В направлении применения солнечной энергии уже выполнен ряд работ и доказана возможность ее использования для опреснения и дистилляции воды, приготовления пищи, нагревания воды, привода насосов и других целей. В целом несомненно, что человечество в будущем обратится к Солнцу - главному источнику энергии, которую и будет применять различными путями.

Один из путей использования энергии Солнца заключается в реализации проектов улавливания и накопления энергии фотосинтеза. Трудность реализации таких проектов заключается в низкой эффективности фотосинтеза как способа превращения солнечной энергии в химическую.

Считается, что благодаря фотосинтезу ежегодно образуется около 155 млрд. т сухой органической массы, главным образом целлюлозы, которую можно использовать как топливо. Однако из-за низкого КПД энергетического преобразования пришлось бы значительно увеличить посевные площади для получения энергии в необходимых количествах. Поэтому проводятся интенсивные исследования, направленные на увеличение КПД преобразования. При этом пытаются получить дешевую полезную массу растений, по возможности создавая оптимальный искусственный газовый состав и т. п. Так, по данным, полученным в США, если выращивать кукурузу как энергетическое топливо, то его стоимость будет сравнима с нынешней стоимостью ископаемого топлива; если использовать для этой цели хвойный лес, в котором бы на акр (1 акр=0,4 га) приходилось около 6 тыс. деревьев, и собирать урожай один раз в 12 лет, то вследствие замедленного роста деревьев и некоторых других факторов стоимость производимой из них энергии возрастет примерно вдвое по сравнению с энергией, получаемой от кукурузы. Многолетние растения имеют, однако, преимущество перед однолетними: урожай с них можно собирать в течение всего года в соответствии с потребностями, и при этом не возникает проблем, связанных с созданием огромных хранилищ «энергетических урожаев», которые заготавливают только в определенный сезон. Поэтому для производства энергии* обратились к быстро растущим лиственным деревьям, у которых после порубки корни дают побеги, что позволяет избежать ежегодных посадок.

На экспериментальных участках заброшенных пахотных земель в Центральной Пенсильвании выращиваются гибридные тополя. Один из гибридов, высаженный в количестве примерно 3700 деревьев на акр, «производит» энергию, которая оказывается заметно дешевле нефти и несколько дешевле угля. Такая плантация может давать около 681 млн. Вт/(м2-К) (120 млн. Btu) с акра в год при КПД энергетического преобразования 0,6%. Для обеспечения топливом средней электростанции мощностью 400 МВт потребуется плантация площадью 30 тыс. акров. Для снабжения топливом, получаемым на «энергетических плантациях», большей части электростанций в США требуется примерно 160-200 млн. акров даже при коэффициенте преобразования солнечной энергии в топливо, не превышающем 0,4%.

Использование морских возобновляемых ресурсов

Ресурсы морей и океанов можно разбить на три группы:

1)  вертикальные термоградиенты и океанические ветры;

2)  морская биомасса и геотермальные воды;

3)  поверхностные волны, течения и перепады солености.

Предполагают, что использование ресурсов первой группы может начаться в конце 80-х годов, второй - в 90-х, а третьей не ранее 2000-го года. Мощности и стоимости различных потенциальных источников энергии приведены в табл.

Источники энергии

Мощность, мил. кВт

Стоимость производства электроэнергии цент/(кВт*ч)

Вертикальные термоградиенты Поверхностные волны Морские течения Океанские ветры Перепады солености Топливная биомасса Геотермальные воды

10000 500 60 170 3500 770 3000

4-7 11-24 13-32 5-9 14-29 11-15 25-30

Из указанных возможных энергий океана пока наиболее ясно использование вертикальных термоградиентов. На рис. 3.15 показана работа так называемой «закрытой» системы. Насос обеспечивает циркуляцию аммиака, имеющего очень низкую температуру кипения, в замкнутом контуре. Теплая океаническая вода нагревает аммиак (верхняя часть схемы), который переходит в газообразное состояние и в этом виде поступает на турбину, где он расширяется и приводит в действие генератор. С турбины аммиак выходит с пониженной температурой и при меньшем давлении и пропускается через теплообменник, использующий холодную воду; газ сжижается, и цикл повторяется. В «открытой» системе в ^качестве рабочего тела используется морская вода; ее температура кипения снижается в вакуумной камере, где поддерживается давление на уровне 3,5% от нормального атмосферного.


Рассматривая возможные способы преобразования энергии, необходимо учитывать, что в соответствии с законами физики все энергетические процессы сводятся к трансформации одного вида энергии в другой. Здесь важно то обстоятельство, что плотности потоков энергии ограничиваются физическими свойствами среды. Это, в свою очередь, практически исключает применение в энергетике больших мощностей многих казалось бы эффективных процессов трансформации энергии. Например, в топливных элементах химическая энергия окисления водорода непосредственно превращается в электрическую. Такой способ получения электрической энергии, несмотря на очень высокий КПД, равный примерно 70%, на сегодня приходится признать непригодным для промышленности из-за малой скорости диффузионных процессов в электролите и, следовательно, малой плотности энергии. Так, с 1 м* электрода можно получить не более 200 Вт мощности. А это означает, что при генерировании 100 МВт мощности рабочая площадь электродов должна быть примерно 1 км2, что, конечно, практически нереализуемо. Из-за малой плотности потока энергии неперспективным представляется применение в энергетике и прямого преобразования химической энергии в механическую. Такое преобразование происходит с высоким КПД в мускулах животных. Механизм его достаточно глубоко пока не изучен. Но даже если предположить, что такое преобразование энергии будет воспроизведено искусственно, то оно, видимо, не сможет найти применение в энергетике из-за малой плотности потока энергии, которая не может быть больше, чем у топливных элементов.

теплоэлектроцентраль газотурбинная установка гидравлическая электростанция

Список литературы

А.П. Платонов, В.А. Платонов. Основы общей и инженерной экологии. - Ростов-на-Дону: Феникс, 2002. - 352 с.

С.А. Зайцев, А.Н. Толстов, Д.Д. Грибанов, Р.В. Меркулов. Метрология, стандартизация и сертификация в энергетике. - М.: Академия, 2012. - 224 с.

Г.Ф. Быстрицкий, Г.Г. Гасангаджиев, В.С. Кожиченков. Общая энергетика (Производство тепловой и электрической энергии). - М.: КноРус, 2012. - 408 с.

А.И. Перов. Основы построения спутниковых радионавигационных систем. - М.: Радиотехника, 2012. - 240 с.

Г.Ф. Быстрицкий. Общая энергетика. - М.: Академия, 2005. - 208 с.

А.П. Епифанов. Основы электропривода. - СПб.: Лань, 2009. - 192 с.

В.Г. Ерохин, М.Г. Маханько. Основы термодинамики и теплотехники. - М.: Либроком, 2009. - 226 с.

В.И. Елфимов, А.И. Бережной. Основы общей химии. - М.: Высшая школа, 2009. - 248 с.

С.А. Зайцев, А.Н. Толстов, Д.Д. Грибанов, Р.В. Меркулов. Метрология, стандартизация и сертификация в энергетике. - М.: Академия, 2009. - 224 с.

О.В. Свидерская. Основы энергосбережения. - М.: ТетраСистемс, 2009. - 176 с.

Г.Ф. Быстрицкий. Общая энергетика. - М.: КноРус, 2010. - 296 с.

В.Г. Еремин, В.В. Сафронов, А.Г. Схиртладзе, Г.А. Харламов. Безопасность жизнедеятельности в энергетике. - М.: Академия, 2010. - 400 с.

А. да Роза. Возобновляемые источники энергии. Физико-технические основы. - М.: Интеллект, МЭИ, 2010. - 704 с.

Г.Ф. Быстрицкий. Основы энергетики. - М.: КноРус, 2011. - 352 с.

Г.Ф. Быстрицкий. Основы энергетики. - М.: КноРус, 2012. - 352 с.

К.П. Иванов. Основы энергетики организма. Том 5. Энергетика живого мира. Физиологические проблемы. - М.: Наука, 2007. - 264 с.

Г.Г. Новиков. Рост и энергетика развития костистых рыб в раннем онтогенезе. - М.: Едиториал УРСС, 2000. - 296 с.

Похожие работы на - Современные способы получения электрической энергии

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!