Некоторые вопросы современного естествознания

  • Вид работы:
    Контрольная работа
  • Предмет:
    Биология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    14,69 Кб
  • Опубликовано:
    2013-06-13
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Некоторые вопросы современного естествознания
















КОНТРОЛЬНАЯ РАБОТА

по курсу «Концепции современного естествознания»

1. «Концепции современного естествознания». Цели и задачи курса. Место дисциплины в подготовке экономистов

Слово «естествознание» представляет собой сочетание двух слов -«естество» («природа») и «знание». Оно может быть заменено менее употребительным словом-синонимом «природоведение»,которое происходит от общеславянского термина «веды» или «веда» - наука, знание.Мы и до сих пор говорим «ведать» в смысле знать. Но в настоящее время под естествознанием понимается прежде всего так называемое точное естествознание, т. е. уже вполне оформленное - часто в математических формулах -«точное» знание обо всем, что действительно есть (или, в крайней мере, возможно) во Вселенной, а «природоведение» (подобно пресловутому «обществоведению» или «науковедению») обычно невольно ассоциируется с какими-то еще аморфными представлениями о предмете своего «ведения».

Имеются два широко распространенных определения этого понятия:

) «естествознание - это наука о Природе как единой целостности»

) «естествознание-это совокупность наук о Природе, взятая как единое целое».

Как видно, ли два определения отличны друг oт друга. Первое из них говорит об одной единой науке о Природе, подчеркивая единство Природы самой по себе, ее нерасчлененность. Тогда как второе определение говорит о естествознании как о совокупности, т.е. о множестве наук, изучающих Природу, хотя в нем и содержится указание, что по множество надо рассматривать как единое целое.

Однако далее мы увидим, что между этими двумя определениями уж очень большого различия нет. Ибо «совокупность наук о Природе, взятая как единое целое», т. е. не просто как сумма разрозненных наук, а именно как единый комплекс тесно взаимосвязанных естественных паук, дополняющих друг друга, - это и есть одна наука. Только наука обобщенная, или интегративная (от латинского «integer» - целый, восстановленный).

Цель - четко представить себе подлинное единство Природы (се целостность), а именно то единое основание, на котором построено все бесчисленное разнообразие предметов и явлений Природы и из которого вытекают основные законы, связывающие микро- и макромиры, Земли и Космос, физические и химические явления между собой и с жизнью, с разумом. Так же, как нельзя постичь законы, управляющие жизнью и деятельностью человека, посредством знакомства лишь с анатомией отдельных его органов, так невозможно, изучая порознь отдельные естественные науки, познавать Природу как одно целое.

Специфика современного мира, особенности его познания и освоения ставят перед человеком и человечеством новые задачи и выдвигают новые требования:

1. Понимание мира как системы, развитие которой имеет сложный нелинейный характер.

. Познание как мира, так и культуры в целостности и единстве.

. Обогащение мышления через освоение современных методов научного познания.

. Осознание реалий и особенностей современной цивилизации, отход от технократизма, ответственность за результаты деятельности человека и человечества в целом.

. Понимание предназначения человека, его интегральной природы и особого места человека в культуре.

"Концепции современного естествознания" позволяет утверждать, что данный курс - курс фундаментальный, он дает возможность "сформировать целостную естественнонаучную культуру как составную часть общечеловеческой культуры в целом".

Гармоничное развитие цивилизации при возрастающих потребностях человечества невозможно без глубоких знаний концептуальных законов развития бесконечной Вселенной, солнечной системы и отдельно небольшой в этом мире планеты Земля. Возможности современного человечества в кардинальном изменении биосферы и планеты в целом практически безграничны: от изменения климата до их полного разрушения с помощью, прежде всего, ядерного оружия. Человек, ради сохранения хотя бы самого себя, должен найти выход из этой ситуации, одновременно решая проблему гармонизации взаимодействия с природой и развития общества. Тенденция к объединению естественнонаучной культуры и культуры гуманитарной обусловлена необходимостью понимания человеком связи всех явлений Природы и зависимости от нее человека.

Сегодня междисциплинарный подход в развитии социального знания приобретает особое значение. Идет процесс формирования единой науки о человеке, обществе, жизни, природе. Особая роль принадлежит естествознанию. Оно выгодно отличается от отдельных специальных и общественных наук целостным взглядом на явления и процессы, которые изучаются с помощью наиболее общих принципов и подходов.

Курс «Концепции современного естествознания» является продуктом междисциплинарного синтеза физики, химии, биологии, психологии на основе философского, исторического, синергетического подхода к современному естествознанию. Эта наука тесно связана с экономикой, технологическими основами производства, математикой и другими дисциплинами учебного плана.

Основными задачами курса являются:

формирование у студентов научного понимания картины мира на основе изучения и понимания сущности фундаментальных законов природы;

формирование ясного представления о физической реальности мира на основе целостности и многообразия природы;

понимание принципов преемственности и непрерывности в изучении природы от квантовой и статистической физики к молекулярной биологии, от неживых систем к живым организмам, человеку, обществу;

осознание проблем развития общества в соответствии с основными концепциями и законами естествознания.

Знание концепций современного естествознания поможет будущим специалистам гуманитарных направлений расширить кругозор и познакомиться с конкретными естественнонаучными проблемами, тесно связанными с экономическими, социальными и другими проблемами, от решения которых зависит уровень жизни каждого из нас.

Истинный экономист должен владеть не только законами экономики, но и естественнонаучной сущностью объекта, для которого проводится экономический анализ. Без знаний естественнонаучной сущности анализируемого объекта и без понимания естественнонаучных основ современных технологий экономист, даже владеющий экономической теорией, не сможет дать серьезных рекомендаций по оптимальному решению даже самого простого вопроса, связанного с оценкой, например, экономической эффективности применения различных предлагаемых технологий изготовления какого-либо товара народного потребления. Ведь каждая технология характеризуется своей спецификой, влияющей на качество товара, своим энергопотреблением, своей материально-технической базой, воздействием на окружающую среду и т.п., а это означает, что поставленный вопрос сопряжен с решением комплекса задач, включающего экономические, и естественнонаучные аспекты. Специалисту, владеющему вопросами современного естествознания вместе с теоретическими знаниями экономики, не составит труда решить не только простую задачу - составить экономически обоснованный бизнес-план, но и любую сколь угодно сложную экономическую задачу.

2. Взаимосвязь физических, химических и биологических знаний

Науку о Природе, т. е естествознание, традиционно подразделяют на такие более или менее самостоятельные разделы, как физика, химия, биология и психология.

Физика имеет дело не только со всевозможными материальными телами, но с материей вообще. Химия - со всевозможными видами так называемой субстанциональной материи, т. е. с различными субстанциями, или веществами. Биология - со всевозможными живыми организмами.

Ни одна научная дисциплина не ограничивается лишь собиранием наблюдаемых фактов. Задача науки состоит не только в описании, но в объяснении, а это не что иное, как нахождение зависимостей, которые позволяют одну совокупность явлений, часто весьма широкую, вывести на основе теории из другой, как правило, более узкой совокупности явлений.

"Диалектическая логика, в противоположность старой, чисто формальной логике, - говорит Энгельс, - не довольствуется тем, чтобы перечислить и без всякой связи поставить рядом друг возле друга формы движения мышления... Она, наоборот, выводит эти формы одну из другой, устанавливает между ними отношение субординации, а не координации, она развивает более высокие формы из нижестоящих".

Классификация наук, предложенная Ф. Энгельсом, отвечала именно этим требованиям. Установив положение, согласно которому каждой форме движения материи соответствует своя определенная "форма движения мышления", т. е. отрасль науки, Ф. Энгельс выяснил, что как между формами движения материи, так и между их отражением в голове человека-отраслями науки, существуют отношения субординации. Эти отношения он выразил в виде иерархии естественных наук: Биология, Химия, Физика.

И чтобы подчеркнуть, что эта иерархическая связь между естественными науками обусловливает их единство, т. е. целостность всего естествознания как одной системы, Ф. Энгельс прибег к таким определениям отраслей естествознания, которые указывают на происхождение высших форм из низших, "одну из другой". Физику он назвал "механикой молекул", химию-"физикой атомов", а биологию - "химией белка". При этом Ф. Энгельс отметил, что такого рода прием не имеет ничего общего с механистической попыткой сведения одной формы к другой, что это - лишь демонстрация диалектической связи между разными уровнями как материальной организации, так и ее познания, и вместе с тем это - демонстрация скачков от одного дискретного уровня научных знаний к другому и качественного отличия этих уровней между собой.

Однако следует иметь в виду условную (относительную) обоснованность каких бы то ни было подразделений естествознания на отдельные естественнонаучные дисциплины и его безусловную (принципиальную) целостность. Об этом свидетельствует систематическое возникновение междисциплинарных проблем и соответствующих синтетических предметов (таких, как физическая химия или химическая физика, биофизика, биохимия, физико-химическая биология).

При формировании общих - натурфилософских - представлений о Природе она первоначально и воспринималась как нечто принципиально целостное, единое или во всяком случае как-то связанное воедино. Но по мере необходимой детализации конкретных знаний о Природе они оформлялись в как бы самостоятельные раздеты естествознания, прежде всего основные, а именно такие, как физика, химия, биология. Однако эту аналитическую стадию исследований Природе, связанную с детализацией естествознания и с его расчленением на отдельные части, в копне концов должна была сменить или дополнить, как это и произошло на самом деле, противоположная по своему характеру стадия их синтеза. За видимой дифференцией естествознания, или наряду с ней обязательно следует его существенная интеграция, действительное обобщение, принципиальное углубление.

Тенденции единения, пли интеграции, естественнонаучных знаний, стали проявляться очень давно. Еще в 1747-1752 годах Михаил Васильевич Ломоносов обосновал необходимость привлечения физики для объяснения химических явлении и создал на этой основе, как он сам выражался, «теоретическую часть химии», назвав ее физической химией. С тех пор появились самые разнообразные варианты объединения физических и химических знаний (приведшие к таким наукам, как химическая кинетика, термохимия, химическая термодинамика, электрохимия, радиохимия, фотохимия, плазмохимия, квантовая химия). Сегодня всю химию можно назвать физической, потому что у таких наук, которые носят названия «общая химия» и «физический химия», один и тот же предмет и одни и те же методы исследования. Но появилась еще «химическая физика», которую иногда называют химией высоких энергий или химией экстремальных (далеких от нормы) состояний.

С одной стороны (внешне), такое объединение продиктовано невозможностью объяснить химические явления «чисто химическими» средствами и, следовательно, необходимостью обращения за помощью к физике. С другой стороны (внутренне), это объединение есть не что иное, как проявление принципиального единства Природы, которая не знает никакого абсолютно резкого о деления на рубрики и разные науки.

Точно так же в свое время появилась необходимость синтеза биологических и химических знаний. В прошлом столетии стали известны физиологическая химия и затем биохимия. А совсем недавно появилась и стала широко известной, даже модной, новая синтетическая наука физико-химическая биология. Она в сущности претендует на то, что представляет собой не более, но и не менее, как «теоретическую биологию». Потому что для объяснения сложнейших явлений, происходящих в живом организме, нет иных путей, кроме привлечения знаний из химии и физики. Ведь даже простейший живой организм - это и механический агрегат, и термодинамическая система, и химический реактор с разнонаправленными потоками материальных масс, тепла, электроимпульсов. И вместе с тем это ни то, ни другое в отдельности, потому что живой организм - единое целое.

При этом в принципе речь идет уже не только и не столько о редукции, т. е. о сведении всей биологии просто к одной чистой химии, а всей химии просто к одной чистой физике, сколько о действительном взаимопроникновении всех трех этих основных естественных наук друг в друга, хотя и с преимущественным развитием естествознания именно в направлении от физики к химии и биологии.

Таким образом, все исследование Природы сегодня можно наглядно представить в виде огромной сети, состоящей из ветвей и узлов, связывающих многочисленные ответвления физических, химических и биологических наук.

концепция современное естествознание наука

3. Атмосферные процессы в природе, виды, сущность, значение

Атмосфера Земли (от греч. atmos - пар и sphaira - шар), газовая оболочка, окружающая Землю. Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое. Масса атмосферы составляет около 5,15-1015т. Атмосфера обеспечивает возможность жизни на Земле и оказывает большое влияние на разные стороны жизни человечества.

Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, а также с деятельностью живых организмов. Атмосферные газы, в свою очередь, оказывали большое влияние на эволюцию литосферы. Например, громадное количество углекислоты, поступившей в атмосферу из литосферы, было затем аккумулировано в карбонатных породах. Атмосферный кислород и поступающая из атмосферы вода явились важнейшими факторами, которые воздействовали на горные породы. На протяжении всей истории Земли атмосфера играла большую роль в процессе выветривания. В этом процессе участвовали атмосферные осадки, которые образовывали реки, изменявшие земную поверхность. Не меньшее значение имела деятельность ветра, переносившего мелкие фракции горных пород на большие расстояния. Существенно влияли на разрушение горных пород колебания температуры и другие атмосферные факторы. Наряду с этим атмосфера защищает поверхность Земли от разрушительного действия падающих метеоритов, большая часть которых сгорает при вхождении в плотные слои атмосферы.

Атмосфера задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на многие организмы. Атмосферный кислород используется в процессе дыхания животными и растениями, атмосферная углекислота - в процессе питания растений. Климатические факторы, в особенности термический режим и режим увлажнения, влияют на состояние здоровья и на деятельность человека. Особенно сильно зависит от климатических условий сельское хозяйство.

Атмосферные процессы вблизи земной поверхности и в нижних 10-20 км атмосферы особенно важны с практической точки зрения и наиболее изучены.

Их можно свести к трем основным группам: 1) движение воздуха; 2) тепловые процессы (термика); 3) процессы, связанные с водой в атмосфере.

Главным двигателем атмосферных процессов, определяющих погоду и климат, является солнечная энергия, достигающая поверхности Земли непосредственно или в рассеянном виде.

Источником энергии атмосферных процессов в основном является солнечная радиация (солнечное излучение), приходящая к Земле из мирового пространства. Именно лучистая энергия Солнца превращается в атмосфере и на земной поверхности в теплоту, энергию движения и другие виды энергии. Но солнечные лучи больше нагревают земную поверхность, чем непосредственно воздух, а уже между земной поверхностью и атмосферой происходит оживленный обмен тепла, а также и воды. Строение земной поверхности, ее рельеф имеют значение и для движений воздуха. С влияниями земной поверхности (нагревание, запыление) в определенной степени связаны и оптические свойства атмосферы, и ее электрическое состояние.

То, что совершается в атмосфере в данный момент, совокупность атмосферных процессов, происходящих в атмосфере в течение короткого времени, называется погодой. Характеристики погоды, такие, как температура воздуха, облачность, атмосферные осадки, ветер.

Современная климатология стремится показать именно атмосферные процессы в их связи с географической обстановкой. При этом приходится для их иллюстрации пользоваться примерами, накопленными старой климатологией, рассматривавшей следующие - основные метеорологические элементы:

) атмосферное давление;

) температуру воздуха, характеризующую его тепловое состояние;

) влажность воздуха;

) воздушные течения, рассматриваемые по величине скорости воздуха и по направлению; 5) видимость, или прозрачность, атмосферы;

) облачность и осадки в твердом и жидком состоянии.

Существует три основных цикла атмосферных процессов, определяющих климат. Это так называемые климатообразующие процессы - теплооборот, влагооборот и атмосферная циркуляция.

Теплооборот

Сквозь атмосферу проходит поток солнечной радиации.Атмосфера частично поглощает солнечные лучи, преобразуя их энергию в теплоту; частично рассеивает их, меняя по качеству (спектральному составу); частично они отражаются назад облаками.

Кроме обмена тепла путем излучения, между земной поверхностью и атмосферой происходит обмен тепла путем теплопроводности. В передаче тепла внутри атмосферы особенно важную роль играет перемешивание воздуха в вертикальном направлении. Значительная часть тепла, поступающего на земную поверхность, затрачивается еще на испарение воды, переходя в скрытую форму. Потом, при сгущении водяного пара в атмосфере, это тепло, выделяясь, идет на нагревание воздуха.

Температура воздуха, постоянно ощущаемая как тепло или холод, имеет важнейшее значение для жизни на Земле вообще, для жизни и хозяйственной деятельности людей в частности. Температура воздуха меняется в течение суток и в течение года в зависимости от вращения Земли и связанных с ним изменений в притоке солнечной радиации. Но она меняется и нерегулярно, непериодически, в связи с воздушными течениями, направленными из одних мест Земли в другие. Распределение температуры воздуха по Земному шару в основном зависит от общих условий притока солнечной радиации по широтам, от распределения суши и моря, которые по-разному поглощают радиацию и по-разному нагреваются, и, наконец, от воздушных течений, переносящих воздух из одних областей Земли в другие.

Влагооборот

Между атмосферой и земной поверхностью происходит постоянный оборот воды, или влагооборот. С поверхности океанов и других водоемов, влажной почвы и растительности в атмосферу испаряется вода, на что затрачивается большое количество тепла из почвы и верхних слоев воды. Водяной пар - вода в газообразном состоянии - является важной составной частью атмосферного воздуха.

При существующих в атмосфере условиях водяной пар может испытывать и обратное преобразование: он конденсируется, сгущается, вследствие чего возникают облака и туманы, В процессе конденсации в атмосфере освобождаются большие количества скрытого тепла. Из облаков при определенных условиях выпадают осадки. Возвращаясь на земную поверхность, осадки тем самым уравновешивают испарение в целом для всего Земного шара.

Количество выпадающих осадков и его распределение по сезонам влияют на растительный покров и земледелие. От распределения и колебания количества осадков зависят также условия стока, режим рек, уровень озер и другие гидрологические явления. От большей или меньшей высоты снежного покрова зависят промерзание почвы и режим вечной мерзлоты.

Атмосферная циркуляция

Неравномерное распределение тепла в атмосфере приводит к неравномерному распределению атмосферного давления, а от распределения давления зависит движение воздуха, или воздушные течения.

На характер движения воздуха относительно земной поверхности важное влияние оказывает тот факт, что движение это происходит на вращающейся Земле. В нижних слоях атмосферы на движение воздуха также влияет трение. Движение воздуха относительно земной поверхности называют ветром, всю систему воздушных течений на Земле - общей циркуляцией атмосферы. Вихревые движения крупного масштаба - циклоны и антициклоны, постоянно возникающие в атмосфере, делают эту систему особенно сложной.

С перемещениями воздуха в процессе общей циркуляции связаны основные изменения погоды: воздушные массы, перемещаясь из одних областей Земли в другие, приносят с собой новые условия температуры, влажности, облачности и пр.

Кроме общей циркуляции атмосферы, существуют местные циркуляции: бризы, горно-долинные ветры и др.; возникают также сильные вихри малого масштаба - смерчи, тромбы.

Ветер вызывает волнение водных поверхностей, многие океанические течения, дрейф льдов; он является важным фактором эрозии и рельефообразования.

Активные воздействия на атмосферные процессы. Большое научное и практическое значение имеет проблема активных воздействий на атмосферные процессы с целью изменения погоды и климата. Работы в этом направлении, впервые (в 50-х гг.) начатые в Советском Союзе, уже привели к созданию методов воздействия на некоторые атмосферные процессы. Так, в частности, рассеяние в облаках некоторых реагентов изменяет развитие грозовых облаков и предотвращает выпадение града, который приносит большие убытки сельскому хозяйству. Разработаны методы рассеяния туманов, защиты растений от заморозков, ведутся экспериментальные работы по воздействию на облака для увеличения количества осадков. Большинство применяемых сейчас методов воздействия на атмосферные процессы основано на возможностях управления неустойчивыми процессами, динамика которых может быть изменена при затратах сравнительно небольших количеств энергии и реагентов.

Атмосферный перенос

Воды земного шара находятся в постоянном взаимодействии и в процессе круговорота связаны воедино. Под влиянием солнечной радиации с поверхности океанов, морей, рек, озёр, ледников, снежного покрова и льда, почвы и растительности ежегодно испаряется 525 тысяч кубических километров воды. Большой круговорот включает в себя ряд местных, внутренних влагооборотов и представляет собой многообразный процесс перемещения, расходования и возобновления влаги на земной поверхности, в недрах земли и в атмосфере.

Влага, поступившая в атмосферу в результате испарения с поверхности суши и её водоёмов, дополняет то количество её, которое поступает с океана. Воздушными течениями она переносится вглубь материка и, выпадая в виде дождя и снега, орошает территории, более или менее удалённые от океана. Выпавшие осадки вновь испаряются, просачиваются, стекают по земной поверхности. Сток воды рек, впадающих в океан, завершает большой круговорот воды на земном шаре.

В атмосферном звене круговорота происходит перенос влаги в процессе атмосферной циркуляции и образование атмосферных осадков. Единовременный запас влаги в атмосфере невелик, всего 14 тысяч кубических километров, но при постоянном возобновлении этой влаги в процессе испарения с поверхности Земли объём осадков, выпадающих на эту поверхность, равен 525 тыссяч кубических километров. Таким образом, в среднем каждые 10 суток влага атмосферы возобновляется.

Остальные (электрические, оптические, акустические и др.) обычно играют при этом второстепенную роль.

Оптические, акустические и электрические явления в атмосфере.

Распространение электромагнитного излучения в атмосфере связано с возникновением различных явлений, обусловленных поглощением и рассеянием света и рефракцией (искривлением траектории светового луча). Хорошо известны явления радуги <#"justify">Литература

. Кузнецов В.И., Идлис Г.М., Гутина В.Н. Естествознание. - М.: Агар, 2006.

3. Концепции современного естествознания /Под ред. В.Н. Лавриенко, В.П. Ратникова. М.: ЮНИТИ-ДАНА, 2005.

4. Концепции современного естествознания. / Под ред. Самыгина С.И. Ростов-на-Дону, ФЕНИКС, 2007.

Похожие работы на - Некоторые вопросы современного естествознания

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!