Оценка уровня шума в помещении. Расчет средств защиты от шума

  • Вид работы:
    Курсовая работа (п)
  • Предмет:
    Безопасность жизнедеятельности
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    102,90 kb
  • Опубликовано:
    2008-07-29
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Оценка уровня шума в помещении. Расчет средств защиты от шума

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Тульский государственный университет

Кафедра аэрологии, охраны труда и окружающей среды

Контрольно-курсовая работа

по дисциплине «Безопасность жизнедеятельности»

на тему: «Оценка уровня шума в помещении.

Расчет средств защиты от шума»










Тула, 2007.

СОДЕРЖАНИЕ

Исходные данные………………………………………………………….…..….3

1. Расчет ожидаемых уровней звукового давления в расчетной точке и требуемого снижения уровней шума……………..………………………..…….4

2. Расчет звукоизолирующих ограждений, перегородок……………………….6

3. Звукопоглощающие облицовки………………………………….………..…..7

4.  Список используемой литературы……………………………………………9

Дано: В рабочем помещении длиной А м, шириной В м, и высотой Н м
размещены источники шума – ИШ1, ИШ2, ИШ3, ИШ4 и ИШ5 с уровнями звуковой мощности. Источник шума ИШ1 заключен в кожух. В конце цеха находится помещение вспомогательных служб, которое отделено от основного цеха перегородкой с дверью площадью. Расчетная точка находится на расстоянии г от источников шума. Sт = 2,5м2


РАССЧИТАТЬ:

1. Уровни звукового давления в расчетной точке - РТ, сравнить с допустимыми по нормам, определить требуемое снижение шума на рабочих местах.

2. Звукоизолирующую способность перегородки и двери в ней, подобрать материал для перегородки и двери.

3. Звукоизолирующую способность кожуха для источника ИШ1. Источник шума установлен на полу, размеры его в плане - (а х b) м, высота - h м.

4. Снижение шума при установке на участке цеха звукопоглощающей облицовки. Акустические расчеты проводятся в двух октавных полосах на среднегеометрических частотах 250 и 500Гц.

Исходные данные

Величина

250Гц

500Гц

Величина

250Гц

500Гц

LР1

109

112

Δ1

8х10^10

1,6х10^11

L Р2

99

97

Δ2

8х10^9

5х10^9

L Р3

95

98

Δ3

3,2х10^9

6,3х10^9

L Р4

93

100

Δ4

2х10^9

1х10^10

L Р5

109

112

Δ5

8х10^10

1,6x10^11


А=

35 м ;

С=

8м;

r 1 =

7,5   м ;

r3 =

8,0 м ;

r5=    14 м ;

В=

20 м ;

9   м ;

r2  =

11 м ;

r4  =

9,5   м ;

LМАКС=1,5 м


1. Расчет ожидаемых уровней звукового давления в расчетной точке и требуемого снижения уровней шума.

Если в помещение находится несколько источников шума с разными уровнями излучаемой звуковой мощности, то уровни звукового давления для среднегеометрических частот 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц и расчетной точке следует определяет по формуле:

Здесь:

L - ожидаемые октавные уровни давления в расчетной точке, дБ; χ - эмпирический поправочный коэффициент, принимаемый в зависимости от отношения расстояния rот расчетной точки до акустического центра к максимальному габаритному размеру источника 1макс, рис.2 (методические указания). Акустическим центром источника шума, расположенного на полу, является проекция его геометрического центра на горизонтальную плоскость. Так как отношение r/lмакс во всех случаях, то примем и

определяется по табл. 1 (методические указания). Lpi        - октавный уровень звуковой мощности источника шума, дБ;

Ф - фактор направленности; для источников с равномерным излучением принимается Ф=1; S - площадь воображаемой поверхности правильной геометрической формы, окружающей источник и проходящей через расчетную точку. В расчетах принять, где r - расстояние от расчетной точки до источника шума; S = 2πr2

= 2πr2  =

2

x

3,14

x

7,5

2    =  353,25   м2

= 2πr2  =

2

x

3,14

x

11

2    =  759,88  м2

= 2πr2  =

2

x

3,14

x

8

2    = 401,92   м2

= 2πr2  =

2

x

3,14

x

9,5

2    = 566,77   м2

= 2πr2  =

2

x

3,14

x

14

2  = 1230,88   м2


ψ- коэффициент, учитывающий нарушение диффузности звукового поля в помещении, принимаемый по графику рис.3 (методические указания) в зависимости от отношения постоянной помещения В к площади ограждающих поверхностей помещения      

 

В - постоянная помещения в октавных полосах частот, определяемая по формуле , где по табл. 2 (методические указания) ; м - частотный множитель определяемый по табл. 3 (методические указания).

 м

Для 250 Гц: μ=0,55 ;  м3

Для 250 Гц: μ=0,7 ;      м3

Для 250 Гц: ψ=0,93

Для 250 Гц: ψ=0,85

т - количество источников шума, ближайших к расчетной точке, для которых (*). В данном случае выполняется условие для всех 5 источников, поэтому т =5.

n- общее количество источников шума в помещении с учетом коэффициента

одновременности их работы.

Найдем ожидаемые октавные уровни звукового давления для 250 Гц:

L = 10lg ( 1x8x10/ 353,25 +1x8x10/ 759,88 + 1x3,2x10/ 401,92 + 1x2x10/ 566,77   +1x8x10/    1230,88  +   4 х     0,93   х(8x10 + 8x10+

+3,2x10+2x10 +8x10)   /     346,5  )=  93,37дБ

Найдем ожидаемые октавные уровни звукового давления для 500 Гц:

L= 10lg (1x1,6x10/ 353,25 + 1x5x10/ 759,88 +  1x6,3x10/ 401,92   +

+1x 1x10/ 566,77 + 1x1,6x10 / 1230,88  + 4 х 0,85 х(1,6x10 + 5x10+

Требуемое снижение уровней звукового давления в расчетной точке для восьми

октавных полос по формуле:

 , где

 -требуемое снижение уровней звукового давления, дБ;

 - полученные расчетом октавные уровни звукового давления, дБ;

Lдоп - допустимый октавный уровень звукового давления в изолируемом от шума

помещений, дБ, табл. 4 (методические указания).

Для 250 Гц : ΔL  = 93,37 -  77 = 16,37 дБ Для500 Гц : ΔL = 95,12 - 73  = 22,12 Дб

2.Расчет звукоизолирующих ограждений, перегородок.

Звукоизолирующие ограждения, перегородки применяются для отделения «тихих» помещений от смежных «шумных» помещений; выполняются из плотных, прочих материалов. В них возможно устройство дверей, окон. Подбор материала конструкции производится по требуемой звукоизолирующей способности, величина которой определяется по формуле:

, где

-суммарный октавный уровень звуковой мощности

излучаемой всеми источниками определяемый с помощью табл. 1 (методические указания).

Для250Гц:  дБ

Для 500 Гц:

 дБ

Bи – постоянная изолируемого помещения

В1000=V/10=(8x20x9)/10=144   м2

Для 250 Гц:    μ=0,55        BИ1000·μ=144·0,55=79,2    м2

Для 500 Гц:    μ=0,7        BИ1000·μ=144·0,7=100,8     м2

т - количество элементов в ограждении (перегородка с дверью т=2) Si-   площадь элемента ограждения

Sстены =   ВхН    -   Sдвери   =      20 ·  9       -       2,5     =      177,5   м2 

Для 250 Гц:

Rтреб.стены   =    112,4 -  77 – 10lg79,2   + 10lg177,5 + 10lg2 =    41,9    дБ

Rтреб.двери   =    112,4 -  77 – 10lg79,2   + 10lg2,5 + 10lg2 =    23,4         дБ

Для 500 Гц:

Rтреб.стены   =    115,33 -  73 – 10lg100,8   + 10lg177,5 + 10lg2 =    47,8    дБ

Rтреб.двери   =    112,4 -  73 – 10lg100,8   + 10lg2,5 + 10lg2 =    29,3         дБ

Звукоизолирующее ограждение состоит из двери и стены, подберем материал

конструкций по табл. 6 (методические указания).

Дверь - глухая щитовая дверь толщиной 40мм, облицованная с двух сторон фанерой толщиной 4мм с уплотняющими прокладками .Стена - кирпичная кладка толщиной с двух сторон в 1 кирпич.

3.3вукопоглащающие облицовки

Применяются для снижения интенсивности отраженных звуковых волн.

Звукопоглощающие облицовки (материал, конструкция звукопоглощения и т.д.) следует производить по данным табл. 8 в зависимости от требуемого снижения шума.

Величина возможного максимального снижения уровней звукового давления в расчетной точке при применении выбранных звукопоглощающих конструкций определяется по формуле:

В -постоянная помещения до установки в нем звукопоглощающей облицовки.

B1 - постоянная помещения после установки в нем звукопоглощающей конструкции и определяется по формуле:

A=α( Sогр - Sобл)) - эквивалентная площадь звукопоглощения поверхностей не занятых звукопоглощающей облицовкой;

α -средний коэффициент звукопоглощения поверхностей не занятых звукопоглощающей облицовкой и определяется по формуле:

Для 250Гц: α  =   346,5 /   (    346,5  +    2390   )   =   0,1266

Для 500 Гц:          α  =   441 /   (   441  +    2390   )   =   0,1558

Sобл    - площадь звукопоглощающих облицовок

Sобл =0,6 Sогр = 0,6 х 2390 = 1434 м 2   Для 250 Гц:  А1 = 0,1266  (     2390    -    1434 )   =  121,03 м2 Для 500 Гц :    А1 =   0,1558  (     2390   -    1434 )  =   148,945 м2

ΔА - величина добавочного звукопоглощения, вносимого конструкцией звукопоглощающей облицовки, м2 определяется по формуле:

- реверберационный коэффициент звукопоглощения выбранной конструкции облицовки в октавной полосе частот, определяемый по табл.8 (методические указания). Выбираем супертонкое волокно,

ΔА   =    1 х   1434  =1434 м 2

конструкциями, определяемый по формуле:

Для 250 Гц      :        = (   121,03    +   1434 )   /     2390    =   0,6506    ;

В1= (   121,03  +   1434 )   /   (   1 -    0,6506 )   =    4450,57  м 2

ΔL= 10lg (     4450,57   х     0,93    /     346,5   х     0,36   )   =     15,21    дБ    '.

Для 500 Гц  :    = (   148,945 +   1434 ) /   2390   =   0,6623 ;

В1 =(   148,945  +   1434 )   /   (   1 -    0,6623 )   =    4687,43   м 2

ΔL = 10lg (     4687,43   х     0,85    /      441    х     0,35   )   =    14,12    дБ.

Для 250 Гц и 500 ГЦ выбранная звукопоглощающая облицовка не будет обеспечивать необходимое снижение уровня шума в октавных полосах частот так как:

Дано: В рабочем помещении длиной А м, шириной В м, и высотой Н м
размещены источники шума – ИШ1, ИШ2, ИШ3, ИШ4 и ИШ5 с уровнями звуковой мощности. Источник шума ИШ1 заключен в кожух. В конце цеха находится помещение вспомогательных служб, которое отделено от основного цеха перегородкой с дверью площадью. Расчетная точка находится на расстоянии г от источников шума.

Sт = 2,5м2


Рассчитать:

4. Уровни звукового давления в расчетной точке - РТ, сравнить с допустимыми по нормам, определить требуемое снижение шума на рабочих местах.

5. Звукоизолирующую способность перегородки и двери в ней, подобрать материал для перегородки и двери.

6. Звукоизолирующую способность кожуха для источника ИШ1. Источник шума установлен на полу, размеры его в плане - (а х b) м, высота - h м.

4. Снижение шума при установке на участке цеха звукопоглощающей облицовки. Акустические расчеты проводятся в двух октавных полосах на среднегеометрических частотах 250 и 500Гц.

Исходные данные:

250Гц

500Гц

Величина

250Гц

500Гц

LР1

103

100

Δ1

2х1010

1х1010

L Р2

97

92

Δ2

5х109

1,6х109

L Р3

100

99

Δ3

1х1010

8х109

L Р4

82

82

Δ4

1,6х108

1х108

L Р5

95

98

Δ5

5

3,2х109

1,6x109

А=

35 м ;

С=

9м;

r 1 =

8   м ;

r3 =

10 м ;

r5=    14 м ;

В=

24 м ;

Н=

9   м ;

r2  =

9 м ;

r4  =

9 м ;

LМАКС=1,5 м


1. Расчет ожидаемых уровней звукового давления в расчетной точке и требуемого снижения уровней шума.

Если в помещение находится несколько источников шума с разными уровнями излучаемой звуковой мощности, то уровни звукового давления для среднегеометрических частот 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц и расчетной точке следует определяет по формуле:

Здесь:

L - ожидаемые октавные уровни давления в расчетной точке, дБ; χ - эмпирический поправочный коэффициент, принимаемый в зависимости от отношения расстояния rот расчетной точки до акустического центра к максимальному габаритному размеру источника 1макс, рис.2 (методические указания). Акустическим центром источника шума, расположенного на полу, является проекция его геометрического центра на горизонтальную плоскость. Так как отношение r/lмакс во всех случаях, то примем и

определяется по табл. 1 (методические указания). Lpi        - октавный уровень звуковой мощности источника шума, дБ;

Ф - фактор направленности; для источников с равномерным излучением принимается Ф=1; S - площадь воображаемой поверхности правильной геометрической формы, окружающей источник и проходящей через расчетную точку. В расчетах принять, где r - расстояние от расчетной точки до источника шума; S = 2πr2

= 2πr2  =

2

x

3,14

x

  8

2    =  402,12   м2

2

x

3,14

x

  9

2    =  508,12  м2

= 2πr2  =

2

x

3,14

x

10

2    = 628,32   м2

= 2πr2  =

2

x

3,14

x

  9

2    = 508,12   м2

= 2πr2  =

2

x

3,14

x

14

2  = 1231,5   м2


ψ- коэффициент, учитывающий нарушение диффузности звукового поля в помещении, принимаемый по графику рис.3 (методические указания) в сти от отношения постоянной помещения В к площади ограждающих поверхностей помещения                                                   

 

В - постоянная помещения в октавных полосах частот, определяемая по формуле, где по табл. 2 (методические указания) ;

μ - частотный множитель определяемый по табл. 3 (методические указания).

 м

Для 250 Гц: μ=0,55 ;  м3            

Для 250 Гц: μ=0,7 ;      м3

Для 250 Гц:   ψ=0,98

Для 500 Гц:   ψ=0,91

m - количество источников шума, ближайших к расчетной точке, для которых (*). В данном случае выполняется условие для всех 5 источников, поэтому m=5.

n- общее количество источников шума в помещении с учетом коэффициента

одновременности их работы.

Найдем ожидаемые октавные уровни звукового давления для 250 Гц:

L = 10lg ( 1x2x10/402.12   +1x5x10/508.12  +   1x1x1010/628.32   +

+   1x1.6x108/508.12   +1x3.2x1010/    1231.5  +   4 х 0,98  х(2x10 + 5x10+1x1010+1.6x108 +3.2x109)   / 415.8  )=  86.51дБ

Найдем ожидаемые октавные уровни звукового давления для 500 Гц:

L= 10lg (1x1x1010/402.12   + 1x1.6x10/508.12   +  1x8x10/628.32   +

+1x 1.6x108/ 508.12   +   1x6.3x10 9 /    1231.5  +   4 х 0,91х(1x1010   + 1.6x10

+8x109+  1.6x108+6.3x109 )/529.2 )= 82.94  дБ

Требуемое снижение уровней звукового давления в расчетной точке для восьми

октавных полос по формуле:

    ,

 – требуемое снижение уровней звукового давления, дБ;

 - полученные расчетом октавные уровни звукового давления, дБ;

Lдоп - допустимый октавный уровень звукового давления в изолируемом от шума

помещений, дБ, табл. 4 (методические указания).

Для 250 Гц ΔL = 86,51 - 68   = 18,51 дБ Для500 Гц: ΔL = 82,94 - 63 = 19,94дБ

2.Расчет звукоизолирующих ограждений, перегородок.

Звукоизолирующие ограждения, перегородки применяются для отделения «тихих» помещений от смежных «шумных» помещений; выполняются из плотных, прочих материалов. В них возможно устройство дверей, окон. Подбор материала конструкции производится по требуемой звукоизолирующей способности, величина которой определяется по формуле:

, где

-суммарный октавный уровень звуковой мощности

излучаемой всеми источниками определяемый с помощью табл. 1 (методические указания).

Для250Гц:   дБ

Для 500 Гц:

  дБ 

Bи – постоянная изолируемого помещения

В1000=V/10=АхВхН/10=(9x24x9)/10=194,4   м2

Для 250 Гц:    μ=0,55        BИ1000·μ=194,4·0,55=106,92    м2

Для 500 Гц:    μ=0,7          BИ1000·μ=194,4·0,7=136,08     м2

т - количество элементов в ограждении (перегородка с дверью т=2) Si-   площадь элемента ограждения

Для 250 Гц:

Rтреб.стены   =    105,84 -  68 – 10lg106,92 + 10lg213,5+ 10lg2 =    41,14дБ

Rтреб.двери   =    105,84 -  68 – 10lg 106,92   + 10lg2,5 + 10lg2 =    26,79 дБ

Для 500 Гц:

Rтреб.стены =   104,16-  63 – 10lg136,08   + 10lg213,5 + 10lg2 =    51,13 дБ

Rтреб.двери  =   104,16-  63 – 10lg136,08   + 10lg2,5 + 10lg2 =    26,81  дБ

Звукоизолирующее ограждение состоит из двери и стены, подберем материал конструкций по табл. 5 и табл. 6 (методические указания).

Перегородка – шлакобетонная панель толщиной 250 мм. Дверь - глухая щитовая толщиной 40мм, облицованная с двух сторон фанерой толщиной 4мм, облицованная с 2 сторон фанерой толщиной 4 мм, с уплотняющими прокладками .

3.3вукопоглащающие облицовки

Применяются для снижения интенсивности отраженных звуковых волн.

Звукопоглощающие облицовки (материал, конструкция звукопоглощения и т.д.) следует производить по данным табл. 8 в зависимости от требуемого снижения шума.

Величина возможного максимального снижения уровней звукового давления в расчетной точке при применении выбранных звукопоглощающих конструкций определяется по формуле:

В -постоянная помещения до установки в нем звукопоглощающей облицовки.

B1 - постоянная помещения после установки в нем звукопоглощающей конструкции и определяется по формуле:

A=α( Sогр - Sобл) ) - эквивалентная площадь звукопоглощения поверхностей не занятых звукопоглощающей облицовкой;

α -средний коэффициент звукопоглощения поверхностей не занятых звукопоглощающей облицовкой и определяется по формуле:

Для 250Гц: α  =   415,8 / (415,8  +  2742 )   =   0,132

Для 500 Гц:          α  =   529,2 / ( 529,8  +  2742   )   =   0,081

Sобл  - площадь звукопоглощающих облицовок

Sобл =0,6 Sогр =   0,6  х 2742  =1645,2   м 2         

Для 250 Гц :    А1   =   0,132 * ( 2742  -  1645,2 )   =  144,78 м2

 Для 500 Гц :    А1 =   0,081 * (2742  -  1645,2)  =   88,72 м2

ΔА - величина добавочного звукопоглощения, вносимого конструкцией звукопоглощающей облицовки, м2 определяется по формуле:

- реверберационный коэффициент звукопоглощения выбранной конструкции облицовки в октавной полосе частот, определяемый по табл.8 (методические указания).

В качестве звукоизолирующего материала выбираем супертонкое волокно с оболочкой из стеклоткани и покрытием из гипсовой плиты толщиной 7 мм с перфорацией.

ΔА   =    1 х   1645,2 =  1645,2 м 2

конструкциями, определяемый по формуле:

Для 250 Гц :        = (144,78    +   1645,2)   /     2742    =   0,653    ;

В1= (144,78    +   1645,2)   /   (1 -    0,653)   =   5155,49м 2;

В1/Sогр =  5155,49/2742=1,88  →  ψ=0,32

ΔL= 10lg (5155,49 х 0,98    / 415,8  х  0,32)   =  15,79 дБ    '.

Для 500 Гц  :    = (88,72 +  1645,2) /   2742=   0,632 ;

В1 =( 88,72 +   1645,2)/  ( 1 - 0,632)   =  4711,74 м 2

В1/Sогр =  4711,74 /2742=1,72→  ψ=0,32

ΔL = 10lg (4711,74 х  0,91 / 529,2    х   0,32)   =  14,03 дБ.

Для 250 Гц и 500 ГЦ выбранная звукопоглощающая облицовка не будет обеспечивать необходимое снижение уровня шума в октавных полосах частот,требуются специальные меры для снижение уровня шума так как:

,

Для 250 Гц : 15,79 дБ    < 18,51  дБ

Для500 Гц :   14,03 дБ   < 19,94   дБ

4. Список используемой литературы.

1. Лабораторный практикум по дисциплине «Безопасность жизнедеятельности» кафедры «Аэрологии, охраны труда и окружающей среды».

2. Алексеев С.П.,Казаков А.М., Колотиков Н.П., Борьба с шумом и вибрацией в машиностроении.-М.: Машиностроение, 1970 - 207 с.

3.Соколов Э.М., Захаров Е.И., Панфёрова И.В., Макеев А.В. Безопасность жизнедеятельности: Учебное пособие для студентов университетов. – Тула, Гриф и К, 2001


Не нашел материал для своей работы?
Поможем написать качественную работу
Без плагиата!