Измерение электродвижущей силы источника тока

  • Вид работы:
    Практическое задание
  • Предмет:
    Физика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    263,35 Кб
  • Опубликовано:
    2013-01-13
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Измерение электродвижущей силы источника тока

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Ижевский государственный технический университет

имени М.Т. Калашникова»

Кафедра «физики и оптотехники»







Лабораторная работа

Тема: Измерение электродвижущей силы источника тока



Выполнил:

Студент группы С03-201-1

Митрофанов Р.Р.

Проверил:

Калугин А.И.



Ижевск 2012

Введение

Цель работы: научиться измерять ЭДС источника тока методом компенсации.

Приборы и принадлежности: выпрямитель ПУ-1М, стабилизированный источник питания, два исследуемых гальванических элемента, перекидной шестиполюсный переключатель, гальванометр, реостат, используемый в качестве сопротивления R.

Теоретическая часть

Между полюсами источника тока существует разность потенциалов (напряжение) как в отсутствие тока, когда цепь разомкнута, так и при наличии тока, когда источник замкнут на внешнее сопротивление. Для поддержания этой разности потенциалов внутри источника происходит разделение разноименных зарядов и перенос их на соответствующие полюса источника. Силы, разделяющие заряды, имеют неэлектрическую природу и называются сторонними силами. Природа этих сил может быть разнообразна (химическая, магнитная, механическая и т.д.). Разделению и переносу зарядов внутри источника тока препятствуют, во-первых, внутреннее электрическое поле, во-вторых, сопротивление среды источника. Работа сторонней электроразделительной силы слагается из работы А1, совершаемой против сил электрического поля внутри источника, и работы против механических сил сопротивления среды А2

где

поэтому (1)


(2)

Если источник тока разомкнут, то А2 = 0. В этом случае сторонние силы не перемещают заряды внутри источника, а лишь поддерживают установившееся на полюсах разделение зарядов. Поэтому

(3)

т.е. электродвижущая сила равна разности потенциалов на полюсах разомкнутого источника тока. В замкнутой цепи ЭДС равна сумме падений напряжения на внутреннем и внешнем участках цепи

(4)

Методическая часть

Измерение ЭДС исследуемого элемента обычно производят сравнением с ЭДС эталонного источника, которая заранее известна с высокой точностью. Для сравнения ЭДС двух элементов используется компенсационная схема (рис.1).


Вспомогательный источник тока G, замыкается на сопротивление RAB (потенциометр R). Гальванометр Р измеряет силу тока, проходящего через GBX и GC. Включим в цепь сначала эталонный источник GC. Перемещая подвижный контакт потенциометра R, можно добиться равенства нулю тока через GC, (что видно по гальванометру). Отсутствие тока в замкнутом контуре, содержащем ЭДС, возможно только в том случае, если действие ЭДС компенсировано напряжением на некотором участке цепи. В данном случае ЭДС эталонного источника (GC) компенсируется напряжением на участке RAС1, то есть:

(5)

Заменив эталонный источник на исследуемый, также можно добиться компенсации, но при положении подвижного контакта в точке С2. При этом можно записать:

(6)

Так при компенсации разветвления тока в узле Д не происходит (I2=0), то величина тока I определяется только значением ЭДС вспомогательного элемента (εG) и сопротивлением Rab:


и остаётся постоянной при замене GC на GBX- Разделив выражение (5) на (6), получим:

(7)

Поскольку компенсирующее напряжение снимается с потенциометра R, то сравнение электродвижущих сил можно заменить сравнением известных величин сопротивлений в той схеме, в которую включены элементы. В лабораторной установке в качестве внешнего сопротивления R используется потенциометр, выполненный из проволоки с высоким удельным сопротивлением ρ, намотанной на каркас. Учитывая, что , а проволока имеет одинаковое сечение по всей длине, выражение (7) можно записать в виде:

(8)

где l1 и l2 длины участков RACI и RAC2 соответственно. Потенциометр снабжён равномерной шкалой с делениями, число которых пропорционально длине. В связи с этим формулу (8) можно переписать в виде:

(9)


Ход выполнения работы

ток электродвижущая сила батарея

Измерения проводим по схеме представленной на рис.2:

Рис.2

Включаем вилку от источника в сеть (~220В). Переключатель S замыкаем на стабилизированный источник питания GC. Передвигаем ручку потенциометра так, чтобы положение стрелки гальванометра было на нуле. По шкале потенциометра определяем число делений NC. Ставим переключатель S в положение GBX.. Передвигая ручку потенциометра R, снова добиваемся отсутствия тока через гальванометр. Определяем число делений потенциометра NX.

Опыт повторяем десять раз и значения заносим в таблицу. Определяем среднее значение NX и NC. Вычисляем ЭДС гальванического элемента по формуле (9), взяв средние значения NX и NC, где - ЭДС исследуемого источника тока, - ЭДС стабилизированного источника питания при комнатной температуре В. Вычисляем погрешность по формуле:

.

Аналогично определяем ЭДС второго элемента.

Результаты измерений

Для первого источника тока:

№ п./п.12345678910Nci144146142146147145146145147147Nxi217216218217218217218219217219

Для второго источника тока:

№ п./п.12345678910Nci147146146145146147147145147146Nxi222221221223221222222223222222

Вычисления

Где f - цена деления линейки.


Для первого источника тока:

В

Для второго источника тока:

В

Вывод

Я научился измерять ЭДС методом компенсаций и получил результаты с небольшими погрешностями для первого источника тока: GBx1=1,52±0,02 В; и для второго: GBx2=1,55±0,02 В. Так как номинал батарей задан 1,5±0,05 В, и вычисленные мною значения входят в этот интервал, следовательно, реальное значение ЭДС этих батарей соответствуют заданному номиналу, и они являются исправными.

Похожие работы на - Измерение электродвижущей силы источника тока

 

Не нашел материал для своей работы?
Поможем написать качественную работу
Без плагиата!