О происхождении “высокотемпературных” осцилляций кинетических коэффициентов в висмуте и полуметаллических сплавах на его основе

  • Вид работы:
    Реферат
  • Предмет:
    Биология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    48,83 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

О происхождении “высокотемпературных” осцилляций кинетических коэффициентов в висмуте и полуметаллических сплавах на его основе













КОНТРОЛЬНАЯ РАБОТА

Дисциплина: геомеханика





Исполнитель: Нестеров В.П.

 

Вопрос 1


Изобразите полную диаграмму деформации при объемном напряжение сжатия, для образца породы с упругими свойствами. В аксонометрической проекции изобразите анализируемые деформации для образца цилиндрической формы, используя рисунок выведите аналитическое выражение деформации.


Для характеристики деформационных свойств грунтов используются: модуль деформации E (модуль упругости Еу и модуль общей деформации Еобщ), коэффициент поперечного расширения р., модуль сдвига G и модуль объемного сжатия К.

Показатели деформационных свойств в пределах справедливости закона Гука связаны определенными зависимостями, которые позволяют по двум любым показателям определять остальные.

Модуль упругости Eу равен отношению напряжения при одноосном сжатии к относительной обратимой деформации.

Модуль общей деформации Еобщ равен отношению напряжения при одноосном сжатии к общей относительной деформации.

Очевидно, что Еобщ < Eу. Для линейно-деформируемых материалов модуль упругости равен модулю деформации и не зависит от напряжения, т. е. является величиной постоянной. Но для большинства горных пород модуль упругости и модуль общей деформации являются переменными показателями, зависящими от величины и продолжительности действия давления.

В зависимости от продолжительности давления на грунт различают: модуль динамической упругости Ел, модуль статической упругости Eд и модуль общей деформации Еобщ. Между этими модулями существует такое соотношение:

д > Eу > Еобщ

Разница между статическим модулем упругости и модулем общей деформации зависит от вида породы и ее структуры: для скальных пород отношение Eу к Еобщ равно примерно 2, а для рыхлых глинистых пород может достигать нескольких порядков, так как их деформация происходит в результате существенного уплотнения грунта.

Влияние минералогического состава на упругие свойства скальных грунтов. К настоящему времени накоплено значительное количество данных по упругим константам основных породообразующих минералов. Значение модуля упругости различных минералов изменяется в широком пределе. Такие минералы, как корунд, пирит, гранаты, магнетит, гематит, жадеит, оливин, циркон, обладают высокими значениями модуля упругости, равными или превышающими упругость стали (2•105 кГ/см2). Затем идут минералы с высокой упругостью: диопсид, эпидот, авгит, роговая обманка, флюорит, апатит. Такие широко распространенные в осадочных дисперсных грунтах минералы; как кварц, полевые шпаты, слюды, кальцит, обладают средней упругостью. И наконец, есть минералы (серпентин, гипс и др.), обладающие низкой упругостью.

Влияние минералогического состава слагающих породу частиц на упругость можно установить лишь для образцов пород, обладающих незначительной пористостью (п<1%). При больших значениях пористости упругость пород определяется их структурно-текстурными особенностями (в основном пористостью, трещиноватостью и размером частиц).

У малопористых пород упругие параметры непосредственно зависят от упругих констант слагающих их минералов. Так, слюды дают понижение упругих констант пород, а темноцветные минералы и гранат - повышение. Поэтому особенно высокой упругостью обладают ультраосновные породы и эклогиты. Упругость плагиоклазов зависит от их состава: с повышением основности упругие константы плагиоклазов растут. В связи с этим лабродориты по своей упругости занимают среднее место между кислыми и основными породами. Особо высокой упругостью обладает жадеит - минерал, типичный для особо плотных пород больших глубин. Этот и другие факты показывают, что упругость минералов и пород оказывается тем выше, чем при больших давлениях они образовались.

Высокими значениями модуля деформации, близкими по величине к модулю упругости основных минералов, обладают эклогиты, перидотиты, амфиболиты, пироксениты, габбро и диабазы, т. е. породы, принадлежащие к ультраосновным и основным интрузивам.

Влияние пористости и трещиноватости на модуль упругости и модуль общей деформации скальных пород. При рассмотрении изменения модуля упругости близких по минералогическому составу пород, но имеющих различную пористость, видно, что для каждой петрографической группы пород значения модуля упругости уменьшаются с ростом пористости. Для пород с высокой пористостью (n>10%) величина модуля упругости будет полностью определяться влиянием пористости.

Трещиноватость скальных пород является основным фактором, определяющим их деформируемость и прочность. Поверхность трещин в результате наличия макро- и микроскопических выступов и впадин обычно бугристая. Поэтому реальная площадь контакта двух блоков породы может быть в 100-100 000 раз меньше геометрической площади касания. Ввиду этого при возникновении сжимающих напряжений, нормальных к плоскости трещины, на выступах и прилегающих к ним зонах происходит концентрация напряжений, превышающих прочность материала выступа. В результате пластического деформирования или хрупкого разрушения выступов происходит сближение двух поверхностей. При этом увеличивается площадь реального контакта поверхностей и сопротивление деформированию.

Вопрос 2


Выделите на диаграмме участки лавинного развития трещин. Объясните процессы происходящие на соответсвующем участке деформации.

Структурно-геологические карты скальных оснований составляются для районов строительства в сложных геологических условиях на основе пластовых геологических карт масштаба 1:1000 и в отдельных случаях масштаба 1:500 .

На эти карты наносят простирания основных структурных элементов (оси складок, элементы залегания слоев, линии разломов, тектонические нарушения второго и последующих порядков и т.п.), на картах показывают также крупные трещины, пересекающие основные сооружения и требующие специальной заделки. В зависимости от генезиса трещин их показывают различными условными знаками. Соответствующими стрелками отмечают элементы залегания тектонических нарушений и трещин, а также направления происходивших по ним смещений.

На эту же карту наносят основные направления простираний всех других систем мелких трещин в виде круговых диаграмм в изолиниях, которые показывают на карте раздельно для различных структурно-геологических зон или геоструктурных блоков.

Карты трещиноватости составляют также с использованием показателей количественных характеристик трещин: частоты трещиноватости, коэффициента трещинной пустотности и пр. На этих картах выделяют в соответствии с геолого-структурными элементами участки, различные по интенсивности трещиноватости. Составленные таким образом карты районирования по степени трещиноватости могут быть полезны на предварительных стадиях исследований при выборе вариантов трассы, а также при оценке вариантов размещения сооружений.

Для расчетов устойчивости упорных массивов в примыканиях арочных мостов составляют специальные карты-срезы трещиноватости. На них, кроме направлений крупных доминирующих трещин, наносят простирания различных систем мелкой трещиноватости, выявленных с помощью круговых диаграмм в изолиниях. Направления крупных трещин и простирания систем мелкой трещиноватости учитывают в расчетах устойчивости мостов.

Рис. 2. Карта трещиноватости (по Т.В. Плотниковой):

 - поперечные трещины;

 - продольные трещины;

 - полосы течения наклонные;

 - полосы течения горизонтальные;

 - наклон горизонтальной поверхности;

 - вертикальный контакт;

 - простирание вмещающих пород;

- жильные породы

Для получения более полного представления об инженерно-геологических условиях скального основания строится его модель, которая может быть плоской и пространственной. Плоская модель изображается на чертеже в виде разреза по оси сооружения. По содержанию она может быть геоструктурной, геомеханической, гидрогеологической. На геомеханическую модель, а также на геоструктурные элементы наносят зоны скального массива, характеризующиеся определенными показателями физико-механических свойств пород.

На основании плоской геомеханической модели строят пространственную модель из элементарных блоков, которая подвергается соответствующим испытаниям в лабораторных условиях.

При инженерно-геологическом изучении трещиноватости скальных и полускальных пород необходимо уделять большое внимание следующим основным вопросам:

пространственному расположению трещин, т.е. их ориентировке, с целью выяснения господствующих систем трещин, ориентировке поверхностей и зон ослабления и, следовательно, пространственной неоднородности и анизотропии пород на том или ином участке;

морфологии трещин и систем трещин для установления их генетических типов и выделения локальных и региональных трещин;

оценке влияния трещин и систем трещин как поверхностей и зон ослабления на прочность, деформируемость, устойчивость и водонепроницаемость пород и их анизотропность в этом отношении; оценке их влияния на устойчивость проектируемых сооружений;

определению рациональной методики разведочных и опытных работ при инженерно-геологических изысканиях и исследованиях для выявления анизотропии и дирекционности физико-механических свойств горных пород в зависимости от ориентировки их трещиноватости.

При изучении ориентировки трещин на том или ином участке, например, на участке предполагаемого расположения сооружений или на уже выбранном для размещения участке, прежде всего необходимо определить элементы залегания горных пород, ориентировку их слоистости, сланцеватости, волокнистости и других текстурных особенностей. Затем произвести массовые измерения элементов залегания плоскостей трещин (200 - 500 измерений на каждом участке). Измеряют и записывают обязательно все три элемента ориентировки плоскостей трещин - азимуты простирания и падения и угол падения. Азимут простирания для удобства последующей обработки результатов наблюдений лучше измерять в северных румбах.

После этого следует произвести систематизацию результатов наблюдений, т.е. выявить ориентировку наиболее часто повторяющихся азимутов простирания и падения трещин, ориентировку господствующих систем трещин. Для каждой системы трещин определяют наиболее часто встречающиеся углы падения или пределы их изменений. При такой систематизации данных наблюдений необходимо строго руководствоваться правилом геологической однородности участков в петрографическом и структурно-тектоническом отношениях. Это значит, что систематизацию данных надо производить раздельно для каждого типа пород, для каждого крыла складки, раздельно для приконтактовой части интрузии и ее центральной части и т.д. Соответственно наблюдения за изменением расположения трещин необходимо проводить, учитывая состав пород, мощность слоев, сопряженность трещин с текстурными особенностями пород, положение складок и других тектонических нарушений, зон милонитизации и брекчирования.

Для наглядности систематизации ориентировки трещин рекомендуются графические построения - розы, диаграммы и карты трещиноватости. Розами трещин выражают один элемент ориентировки трещин - азимут <#"56222.files/image011.gif">

Рис. 3. Полярная диаграмма трещиноватости и результатов замеров азимутов b и углов падения трещин a для III системы трещин:

I - III - системы трещин; I - b СВ 50°, a 85°; II - b СЗ 290°, a 60°; III - b ЮВ 120°, a 50°

Рис. 4. Диаграмма трещиноватости в изолиниях:- III - системы трещин; (I - вертикальные, b СВ 50°; II - вертикальные, b ЮВ 130°; III - наклонные, b СВ 25°, азимуты падения ЮВ a 20°. Количество точек от общего числа измерений (%):- (6 - 5);  - (5 - 4), - (4 - 3), - (3 - 2), - (2 - 1),  - (1 - 0)

Способ построения таких диаграмм очень прост, но они имеют некоторые недостатки. Площади ячеек сетки различны, поэтому концентрация точек в той или иной части диаграммы неточно выражает господствующие системы трещин. Кроме того, точечные диаграммы, основанные на различном количестве наблюдений, несопоставимы между собой. Чтобы они были сопоставимы, концентрация точек на единице площади должна быть выражена не в абсолютных, а в относительных значениях.

В целях устранения отмеченных недостатков точечных диаграмм и более детального выявления распределения трещиноватости для обработки результатов наблюдений следует применять круговую диаграмму в изолиниях. На такой диаграмме измерения трещин (азимут простирания и угол падения) показывают точками на специальной равноплощадной сетке Вальтера-Шмидта. На этой сетке сохраняется равенство площадей и любой части сетки между меридианами и параллелями за счет некоторого искажения углов. В результате нанесения всех измерений получается точечная диаграмма. С помощью специальных шаблонов подсчитывают число точек в каждой клеточке площади сетки и выражают его в процентах от общего числа измерений. Таким образом, сетка покрывается цифрами, расположенными в центре ее ячеек. Затем проводят изолинии так же, как горизонтали при построении топографических карт. Эти изолинии разграничивают площади с различной концентрацией точек. Если на том или ином участке имеются определенные системы трещин, на диаграмме выявляются максимумы, если таковых нет, то изолинии расплывчато, равномерно покрывают поле диаграммы. Достоинством таких диаграмм является наглядность пространственного расположения (ориентировки) трещин на исследуемом участке, возможность сопоставления, систематизации трещин различных участков и районов.

Имеются и другие приемы построения графиков и диаграмм трещин, но при инженерно-геологических исследованиях наиболее часто применяются перечисленные.

При изучении морфологии отдельных трещин и их систем в первую очередь следует обращать внимание на их размещение в плане (одиночные они или образуют группы параллельных, пересекающихся, равномерно или неравномерно распространенных в горных породах, имеются ли зоны повышенной раздробленности), а также на их длину и прерывистость. Выделяют трещины главных направлений и определяющие их. Определяют размеры и форму образующихся отдельностей. Затем устанавливают степень открытости трещин (скрытые, закрытые - «волосные», открытые - зияющие), определяют их ширину и ее изменение по простиранию и с глубиной, характер поверхностей плоскостей трещин (гладкие, ровные, со следами и бороздами скольжения или неровные, бугристые и т.д.), наличие на плоскостях трещин натеков, налетов, разводов. Определяют степень заполненности трещин и состав заполнителя. Изучают, как изменяются породы вблизи трещин, какова водоносность пород по трещинам, интенсивность и характер различных водопроявлений; какими явлениями сопровождается трещиноватость и какие явления ею предопределены - выветривание, коррозионные явления, подвижки отдельных блоков или масс горных пород, просадки, провалы, обвалы и вывалы, отслаивание, образование ложной кровли в горных выработках, зависание пород, куполов и т.д.

При изучении трещин надо установить их генетические типы и дать качественную оценку степени нарушенности и устойчивости горных пород, а также установить возможное локальное или региональное влияние их на физико-механические свойства пород, условия строительства проектируемых сооружений, их устойчивость и развитие геологических процессов.

При инженерно-геологических исследованиях кроме качественной характеристики трещиноватости важно также давать ее количественную оценку. Количественная характеристика трещиноватости, т.е. степени нарушенности сплошности, монолитности горных пород в условиях естественного залегания, сопряжена с известными трудностями. Поэтому в большинстве случаев ограничиваются сравнительной количественной оценкой степени трещиноватости пород, выделением зон и участков, отличающихся разными степенями трещиноватости и особенно повышенной и высокой трещиноватостью.

Такой подход к изучению трещиноватости, несомненно, имеет большое значение, особенно на предварительных этапах исследований - при выборе района или участка расположения сооружений, компоновке сооружений на выбранном участке и т.д. Однако для окончательного решения многих инженерных задач, особенно на стадии детальных исследований, необходимо иметь более точные представления о степени трещиноватости горных пород, так, например, при определении глубины врезки фундаментов сооружений, зоны съема разрушенных пород, глубины и расположения цементационных завес, искусственного уплотнения и укрепления пород основания сооружений, величины возможных осадок сооружений, крутизны заложения уступов и в целом откосов бортов карьеров, устойчивости пород в подземных выработках и решения других вопросов. Поэтому при инженерно-геологических исследованиях необходимо более точно оценивать трещиноватость пород и выполнять для этого специальные исследования в штольнях, шахтах, скважинах большого диаметра, производить различные опытные работы.

При изучении горных пород в естественных обнажениях или в горных выработках (шурфах, штольнях, шахтах) о степени трещиноватости пород следует судить на основе определения числа трещин на 1 м высоты или длины обнаженной поверхности пород, т.е. модуля трещиноватости. В соответствии с этим рекомендуется различать зоны или участки (табл. <http://doc-load.ru/SNiP/Data1/41/41579/index.htm>).

Число обнаруженных трещин в обнажении или в стенке выработки зависит от ориентировки трещин. Если трещины вертикальные и простираются параллельно стенке обнажения, они не будут обнаружены, и, наоборот, если они ориентированы перпендикулярно к стенке обнажения, число их будет определяться точнее. Следовательно, «истинное» число трещин данного направления u может отличаться от подсчитанного в обнажении n, что зависит от угла отклонения простирания плоскости трещин от простирания поверхности обнажения a. Поэтому для того, чтобы точнее определить число трещин на том или ином участке, необходимо ввести поправку на фактически подсчитанное их число:

u = n / sina при a > 0.

Вводить такую поправку целесообразно, если плоскости трещин и обнажения вертикальные. Когда они наклонные, положение усложняется и возникает необходимость учитывать также и углы падения плоскостей трещин и обнажения.

В формировании осадочных горных пород участвуют различные геологические факторы: разрушение и переотложение продуктов разрушения ранее существовавших пород, механическое и химическое выпадение осадка из воды, жизнедеятельность организмов. Случается, что в образовании той или иной породы принимает участие сразу несколько факторов. При этом некоторые породы могут формироваться различным путём. Так, известняки, могут быть химического, биогенного или обломочного происхождения. Это обстоятельство вызывает существенные трудности при систематизации осадочных пород. Единой схемы их классификации пока не существует.

Различные классификации осадочных пород были предложены Ж.Лаппараном (1923 г.), В. П. Батуриным (1932 г.), М. С. Швецовым (1934 г.) Л. В. Пустоваловым (1940 г.), В. И. Лучицким (1948 г.), Г. И. Теодоровичем (1948 г.), В. М. Страховым (1960 г.), и другими исследователями.

Однако для простоты изучения применяется сравнительно простая классификация, в основе которой лежит генезис (механизм и условия образования) осадочных пород. Согласно ей осадочные породы подразделяются на обломочные, хемогенные, органогенные и смешанные.

Осадочные горные породы» объединяют три принципиально различные группы поверхностных (экзогенных) образований, между которыми практически отсутствуют существенные общие свойства. Собственно из осадков образуются хемогенные (соли) и механогенные (обломочные, частично терригенные) осадочные породы. Образование осадков происходит на поверхности земли, в её приповерхностной части и в водных бассейнах. Но применительно к органогенным породам довольно часто термин «осадок» не применим. Так если осаждение скелетов планктонных организмов ещё можно отнести к осадкам, то куда отнести скелеты донных, а тем более колониальных, например, кораллов, организмов не ясно. Это говорит о том, что сам термин «Осадочные горные породы» является искусственным, надуманным, он является архаизмом. Вследствие этого В. Т. Фролов пытается заменить его термином «экзолит». Поэтому анализ условий образования этих пород должен происходить раздельно.

В классе механогенных пород первые два понятия являются равнозначными и характеризуют разные свойства этого класса: механогенный - отражает механизм образования и переноса, обломочный - состав (состоит практически из обломков (понятие строго не определено)). Понятие Терригенный отражает источник материала, хотя механогенными являются и значительные массы обломочного материала, образуемого в подводных условиях.

Эта группа пород включает две главные подгруппы - глины и обломочные породы. Глины - специфические породы, сложенные различными глинистыми минералами: каолинитом, гидрослюдами, монтмориллонитом и др. Глины, выделившиеся из взвеси, называются водноосадочными глинами в отличие от остаточных глин, присутствующих в сохранившихся корах выветривания.

Обломочная порода - главнейшая часть механогенных пород. Среди осадочных пород «обломочные породы» (далее ОП) представляют собой одни из самых распространённых классов горных пород. Объём этого понятия соответствует представлениям ранних периодов становления литологии. Изначально к ним относили породы, содержащие собственно обломки пород и минералов, с одной стороны, и продукты их механического (физического) преобразования - окатанные зерна пород и минералов - с другой. Но определение «обломка» отсутствует. Такая же ситуация и с антагонистом «брекчии» - галькой: что такое галька? Есть узкое определение понятия «галька», по которому галька ограничена в линейных размерах. Однако в литологии есть также объекты, близкие по смыслу гальке, но иных размеров: валуны, гравий и т. д. В широком смысле «галька» (или окатыш по Л. В. Пустовалову) - «это окатанные водой обломки горных пород». Имеется существенное генетическое различие между обломками и окатышами. «Обломочные породы» - породы, сложенные только обломками материнских пород (минералов). Окатыши не являются обломками в прямом смысле и потому не могут входить в группу «обломочных пород». Они составляют самостоятельную, весьма распространённую группу осадочных образований (конгломероиды), сложенную полностью или преимущественно окатышами различных размеров (галька, гравий, конгломераты, галечники, гравелиты и пр.)[8],[9].

Выделяют следующие особенности состояния породы:

Для определения породы использовано понятие о зерне З = Z\, (Z = Zerno): это -любой формы и размеров твёрдое моно- или многофазное образование, имеющее естественную фазовую границу, отделяющую его от других подобных, может быть и сходных по внутренним свойствам, образований. Тогда образец сложен некоторой породой П, если образец - твёрдое, созданное естественным путём, многофазное образование, сложенное зернами З различного состава. В образце, как элементарной части геологического пространства и сложенном множеством зёрен различного состава и размера, возникает новое качество - взаимоотношения зерен между собой.

В связи с этим в осадочных горных породах выделяются два уровня свойств:

Сюда входят: состав, размер, форма и особенности её изменения Размер зёренв подавляющем большинстве случаев размер зерен (D\,) измеряется в трёх направлениях, согласно приписываемой им виртуальной системе координат. Ориентировка этой системы координат относительно внутренних свойств зёрен не определена. Наибольший размер (длина) обозначается через A\,, средний размер (ширина) - B\, и минимальный размер (толщина) - C\,. Конкретные величины значений этих измерений колеблются в широких пределах. Порядок изменения этих величин также неизвестн: если произвольно взять два соседний зерна Z_{i}\, и Z_{i+1}\, в упорядоченной по размерам совокупности зёрен, то величина {T} = {Z_{i}}/{Z_{i+1}}\, не определена.

Поскольку пределы изменения размерных параметров достаточно велики, то создаются специальные шкалы измерений, в которых указываются минимальные и максимальные пределы изменения размеров зёрен определённой группы, получившие специальные названия (пелиты, алевриты, псефиты (пески) и пр.). В практие это деление (выделение гранулометорических фракций) осуществляется с помощью «ситового» анализа. Метод сильно искажает реальные размеры и соотношения между ними в зёрнах.

Наименее изученная часть свойств обломочных пород. Значение формы зерна (F\,) определяется её ролью в гидродинамике переноса зёрен водными потоками, влияя на дальность переноса. Из российских учёных в первые об этом, видимо, заговорил И. А. Преображенский ([14], С. 557). Позже этому фактору уделял внимание Ю. А. Билибин[15] на примере изучения морфологии золотин из россыпей различного типа. К. К. Гостинцев[16] приводит элементы геометрической классификации форм зерен, выделив обобщённые формы: сферы (шаровидные формы), эллипсоиды, параллелепипеды, диски, чешуйки, таблички и др. Классификация форм зёрен приведена в[17],[9].

В „Петрографии осадочных пород“ в качестве аналога формы не обосновано широко используется понятие „окатанность“, как степень округлённости углов в зёрнах. Анализ показал, что „окатанность“ к форме зёрен прямого отношения не имеет, но отражает степень изменения этой формы (физического метаморфизма пород).

Можно выделить основные стадии механогенного метаморфизма:

. „совершенно не окатанные, остроугольные зерна пород (щебень, хрящ, дресва, каменная крошка, зерна- осколки)“;

. зерно окатано так, что еще можно установить её изначальную форму; эта стадия позволяет проводить дробную классификацию на основе уже существующих представлений об обломочных породах.

. „вполне окатанные зерна с одинаково сглаженной поверхностью обтекаемой формы“. Начальная форма уже не определима. Конечная форма описывается уравнениями второго порядка.

Установлена зависимость состава зёрен M\, от размера зёрен. Эта зависимость проявляется в том, что зёрна, размер которых \le{2}\, мм, существенно сложены минералами и их обломками. Зёрна, размер которых \ge{2}\, мм, сложены существенно породами. Это позволяет всё многообразие рыхлых обломочных пород разделить на минакласты (зёрна сложены преимущественно минералами (миналы)) и литокласты (- преимущественно породами).

В литокластах форма зёрен уже существенно зависит от состава зёрен. Здесь начинают сказываться внутренние свойств пород.

Возможны установления определённых отношений между размерными параметрами. В минакластах зёрна не изометричны, их размерные параметры соответствуют неравенству {A}\ge{B}\ge{C}\,, а это означает возможное наличие функциональных зависимостей между ними. Кроме того выявлены зависимости вида \Pi = k_{\Pi}A + K_{\Pi}\,, где \Pi = {A}+{B}+{C}\, -периметр. В этих случаях параметр k_{\Pi}\, представляет собой обобщённый коэффициент уплощённости, то есть чем он меньше, тем более уплощённым в среднем является зерно. Так для зёрен алмаза k_{\Pi}\approx 1, для кварца k_{\Pi}\approx 0{,}6 - 0{,}8\,, для золотин k_{\Pi}\approx 0{,}5\,.

На практике использование понятия „структура“ в основном свелось к характеристике размерных параметров зёрен. В связи с этим понятие „структура“ в петрографии не соответствует понятию „структура“ в кристаллографии, структурной геологии и других науках о строении вещества. В последних „структура“ больше соответствует понятию „текстура“ в петрографии и отражает способ заполнения пространства.[18]. Если принять, что „структура“ является пространственным понятиям, то следующие структуры нужно считать бессодержательными: вторичные или первичные структуры и текстуры; кристаллические, химические, замещения (разъедания, перекристаллизации и т. д.), деформационные структуры, ориентированные (3-280), остаточные структуры (3-282) и пр.[19] (в скобках- номер тома и номер структуры в списке). Поэтому эти „структуры“ названы „ложными структурами“.

Вопрос 4

деформация горная порода трещина

Объемный и поверхностный масштабные эффекты и их влияние на геомеханические свойства образца.

Основные представления о геомеханике как науке о механических явлениях и процессах в земной коре, вызываемых воздействием горных работ, и ее объекте - массиве горных пород, являющемся частью земной коры. Понятие о массивах горных пород, их физических состояниях и важнейших физико-механических свойствах, а также о причинах различия свойств массива и образцов горных пород. Масштабный эффект и масштабные уровни. Геологическое и тектоническое строение массивов горных пород. Классификация массивов по прочности, слоистости, трещиноватости и склонности к разрушению. Методы изучения и прогнозирования состава, строения, состояния и свойств горных массивов. Деформируемость, прочность и разрушение горных пород и массивов. Механические модели пород: упругие, жесткопластические, упругопластические, реологические. Теории прочности и критерии разрушения пород. Полные диаграммы прочности. Деформационные, прочностные и реологические характеристики горных пород, их физический смысл и размерность. Паспорт прочности горных пород, методы и технические средства его построения. Методы и средства испытаний пород в лабораторных и натурных условиях. Начальные гравитационные и тектонические поля напряжений в массивах горных пород, их связь с геодинамическим полем напряжений. Характер напряженно-деформированного состояния массива при таких полях, оценка компонентов тензора напряжений в его заданных точках. Геомеханические процессы, происходящие в геологической среде под влиянием горных работ, и управление ими при подземных и открытых работах, а также подземном и гражданском строительстве. Методы и средства исследований напряженно-деформированного состояния массива горных пород. Маркшейдерские прямые и косвенные методы. Особенности деформирования и разрушения горных пород и массивов в условиях трехмерного напряженно-деформированного состояния, включая область запредельного деформирования. Процессы разупрочнения и предразрушения горных пород при добыче полезных ископаемых. Управление тяжелыми кровлями угольных месторождений. Особенности деформирования и разрушения породных массивов вблизи забоя, устья и сопряжений выработок. Деформирование и разрушение кровли, почвы и породных целиков очистных выработок. Зоны опорного давления в окрестности выработок. Физическая природа концентрации напряжений в зонах опорного давления и характер распределения напряжений в зависимости от ряда определяющих природных и производственных факторов. Сдвижение породных массивов под влиянием подземных и открытых горных работ. Связь сдвижения горных пород и газовыделения в горные выработки и на поверхность. Определение параметров сдвижения породных массивов и земной поверхности. Защита зданий, сооружений и природных объектов от вредного влияния подземных разработок. Динамические проявления геомеханических процессов в виде горных ударов и внезапных выбросов; их прогноз и предупреждение. Основные признаки удароопасности пород. Механизм внезапных выбросов. Геодинамическое районирование. Раскройка шахтных полей в условиях блочного строения массива, рациональное расположение выработок в активных геодинамических зонах. Методы и средства (включая геофизические) изучения и контроля геомеханических процессов в массиве. Устойчивость горных выработок и подземных сооружений. Взаимодействие массива горных пород с инженерными конструкциями подземных сооружений. Основные положения механики подземных сооружений. Крепи горных выработок и их роль в управлении напряженно-деформированным состоянием массива. Капитальные, подготовительные и очистные выработки. Требования к выбору типа и параметров крепи. Геомониторинг при строительстве подземных сооружений. Обработка и интерпретация результатов измерений. Обратный анализ. Оценка устойчивости породных откосов и бортов карьеров. Основные факторы, определяющие их устойчивость. Горнотехнические и специальные способы управления состоянием бортов карьеров. Понятие о сейсмических волнах, их параметры; воздействие сейсмических сигналов на строящиеся и эксплуатируемые подземные сооружения. Принципы и приемы геомеханического воздействия на массив для повышения интенсивности и продолжительности нефтb газоотдачи скважин. Методы контроля. Связь между геомеханическими и геодинамическими процессами. Методы исследований геомеханических процессов в лабораторных и натурных условиях. Предметное и аналоговое моделирование. Критерии подобия. Методы: эквивалентных материалов, фотоупругости, центробежного моделирования. Снижение напора подземных вод в водоносных породах и их осушение. Влияние подземных вод на устойчивость горных выработок и откосов горных пород. Горно-строительный дренаж. Осадка толщ горных пород в результате глубокого водопонижения.

Список использованной литературы


1.Егоров А.А. Рассказ о прочности.- М.: Государственное учебно-педагогическое издательство Министерства просвещения РСФСР,1962.

2.Ицкович Г.М. Сопротивление материалов.- М.: Высшая школа,1982.

.Михайлов А.М. Сопротивление материалов.- М.: Стройиздат,1989.

.Степин П.А. Сопротивление материалов.- М.: Высшая школа,1979.

Похожие работы на - О происхождении “высокотемпературных” осцилляций кинетических коэффициентов в висмуте и полуметаллических сплавах на его основе

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!