Особенности свойств аморфного углеродного материала как носителя электродных катализаторов для топливных элементов

  • Вид работы:
    Реферат
  • Предмет:
    Биология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    22,23 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Особенности свойств аморфного углеродного материала как носителя электродных катализаторов для топливных элементов

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ГЕОИНФОРМАТИКИ И ГЕОДЕЗИИ








ДОКЛАД ПО ГЕОДЕЗИИ

НА ТЕМУ:

«Дальномеры в тахеометрах»

ПОДГОТОВИЛА ст.гр. ГИС-08 Гудиниц Д.В.

ПРОВЕРИЛ доц. Лунёв А.А.









ДОНЕЦК 2011

Содержание

1.  Введение

2. Виды дальномеров

. Лазерный дальномер

.1 Физические основы измерений и принцип действия

.2 Особенности конструкции и принцип работы. Виды и применение

. Оптический дальномер

.1 Физические основы измерений и принцип действия

.1.2 Нитяной дальномер с постоянным углом

.1.3 Измерение нитяным дальномером наклонного расстояния

.2 Особенности конструкции и принцип работы

Вывод

Список литературы

.       
Введение

Известно, что требования к качеству строительной продукции быстро растут Возрастает и необходимость постоянного повышения общего технического уровня строительных работ, надежности, долговечности, эстетичности, технологичности строительного производства.

Инженерно-геодезические измерения и инженерно-геодезические построения занимаю особое место в общей схеме строительных работ. Они начинаются задолго до начала строительства при проведении инженерно-геодезических изысканий, выноса проектов сооружений в натуру, являются составной частью технологии строительно-монтажных работ в период всего строительства, а также сопутствуют при проверке качества строительной продукции и продолжаются в эксплуатационный период при проведении наблюдений за деформациями зданий и сооружений, если того требуют условия проекта. Поэтому вопросы точности проведения геодезических работ имеют принципиальное значение, ибо они в конечном счете определяют уровень качества и надежность выстроенных зданий и сооружений.

При оценке надежности и точности измерений главным является выбор совершенной методики геодезических работ и соответствующих приборов и оборудования, исходя из заданных технологических требований проекта и допусков,

С ростом научно-технического прогресса и технического уровня строительства развивались и совершенствовались методики и приборы для проведения инженерно-геодезических работ.

Дальномер - устройство, предназначенное для определения расстояния от наблюдателя до объекта. Используется в геодезии <#"56111.files/image001.gif"> 

Рис.1 Современные модели лазерных дальномеров

Способность электромагнитного излучения <#"56111.files/image003.gif">

Рис.2 Принцип действия дальномера

Первую группу составляют геометрические дальномеры. Измерение расстояний дальномером такого типа основано на определении высоты h равнобедренного треугольника ABC (рис. 3) например по известной стороне АВ = I (базе) и противолежащему острому углу. Одна из величин, I обычно является постоянной, а другая - переменной (измеряемой). По этому признаку различают дальномеры с постоянным углом и дальномеры с постоянной базой. Дальномер с постоянным углом представляет собой подзорную трубу <#"56111.files/image004.gif">

Рис. 3 - Принцип действия дальномера геометрического типа

АВ -база, h -измеряемое расстояние

При фазовом методе - излучение модулируется по синусоидальному закону с помощью модулятора (электрооптического кристалла, меняющего свои параметры под воздействием электрического сигнала). Отраженное излучение попадает в фотоприемник, где выделяется модулирующий сигнал. В зависимости от дальности до объекта изменяется фаза отраженного сигнала относительно фазы сигнала в модуляторе. Измеряя разность фаз, измеряется расстояние до объекта.

.2 Особенности конструкции и принцип работы. Виды и применение

Первый лазерный дальномер имел название ХМ-23. Источником излучения в нем является лазер на рубине с выходной мощностью 2.5 Вт и длительностью импульса 30нс. В конструкции дальномера широко используются интегральные схемы. Излучатель, приемник и оптические элементы смонтированы в моноблоке, который имеет шкалы точного отчета азимута и угла места цели. Питание дальномера производится то батареи никелево-кадмиевых аккумуляторов напряжением 24в, обеспечивающей 100 измерений дальности без подзарядки. В другом артиллерийской дальномере, также принятом на вооружение армий, имеется устройство для одновременного определения дальности до четырех целей., лежащих на одной прямой, путем последовательного стробирования дистанций 200,600,1000, 2000 и 3000м.

Интересен шведский лазерный дальномер. Конструкция дальномера отличается особой прочностью, что позволяет применять его в сложенных условиях. Дальномер можно сопрягать при необходимости с усилителем изображения или телевизионным визиром. Режим работы дальномера предусматривает либо измерения через каждые 2с. в течение 20с. и с паузой между серией измерений в течение 20с. либо через каждые 4с. в течение длительного времени. Цифровые индикаторы дальности работают таким образом, что когда один из индикаторов выдает последнюю измеренную дальность, и в памяти другого хранятся четыре предыдущие измерения дистанции.

Весьма удачным лазерным дальномерам является LP-4. Он имеет в качестве модулятора добротности оптико-механический затвор. Приемная часть дальномера является одновременно визиром оператора. Диаметр входной оптической системы составляет 70мм. Приемником служит портативный фотодиод, чувствительность которого имеет максимальное значение на волне 1,06 мкм. Счетчик снабжен схемой стробирования по дальности, действующей по установке оператора от 200 до 3000м. В схеме оптического визира перед окуляром помещен защитный фильтр для предохранения глаза оператора от воздействия своего лазера при приеме отраженного импульса. Излучатель в приемник смонтированы в одном корпусе. Угол места цели определяется в пределах + 25 градусов. Аккумулятор обеспечивает 150 измерений дальности без подзарядки, его масса всего 1 кг. Дальномер прошел испытания и был закуплен в ряде стран таких как - Канада, Швеция, Дания, Италия, Австралия.

Один из портативных лазерных дальномеров выполнен в виде бинокля. Источник излучения и приемник смонтированы в общем корпусе, с монокулярным оптическим визиром шестикратного увеличения, в поле зрения которого имеется световое табло из светодиодов, хорошо различимых как ночью, так и днем. В лазере в качестве источника излучения используется аллюминиево-иттриевый гранат, с модулятором добротности на ниобате лития. Это обеспечивает пиковую мощность в 1,5 Мвт. В приемной части используется сдвоенный лавинный фотодетектор с широкополосным малошумящим усилителем, что позволяет детектировать короткие импульсы с малой мощностью, составляющей всего 10 в -9 Вт. Ложные сигналы, отраженные от близлежащих предметов, находящихся в стволе с целью, исключается с помощью схемы стробирования по дальности. Источником питания является малогабаритная аккумуляторная батарея, обеспечивающая 250 измерений без подзарядки. Электронные блоки дальномера выполнены на интегральных и гибридных схемах, что позволило довести массу дальномера вместе с источником питания до 2 кг.

Лазерные дальномеры на рубине и неодимовом стекле обеспечивают измерение расстояния до неподвижной или медленно перемещающихся объектов, поскольку частота следования импульсов небольшая. Не более одного герца. Если нужно измерять небольшие расстояния, но с большей частотой циклов измерений, то используют фазовые дальномеры с излучателем на полупроводниковых лазерах. В них в качестве источника применяется, как правило, арсенид галлия. Вот характеристика одного из дальномеров: выходная мощность 6,5 Вт в импульсе, длительность которого равна 0,2 мкс, а частота следования импульсов 20 кГц. Расходимость луча лазера составляет 350*160 мрад т.е. напоминает лепесток. При необходимости угловая расходимость луча может быть уменьшена до 2 мрад. Приемное устройство состоит из оптической системы, а фокальной плоскости которой расположена диафрагма, ограничивающая поле зрения приемника в нужном размере. Коллимация выполняется короткофокусной линзой, расположенной за диафрагмой. Рабочая длина волны составляет 0,902 мкм, а дальность действия от 0 до 400м. В печати сообщается, что эти характеристики значительно улучшены в более поздних разработках. Так, например уже разработан лазерный дальномер с дальностью действия 1500м. и точностью измерения расстояния + 30м. Этот дальномер имеет частоту следования 12,5 кГц при длительности импульсов 1 мкс. Другой дальномер, разработанный в США имеет диапазон измерения дальности от 30 до 6400м. Мощность в импульсе 100Вт, а частота следования импульсов составляет 1000 Гц.

Поскольку применяется несколько типов дальномеров, то наметилась тенденция унификации лазерных систем в виде отдельных модулей. Это упрощает их сборку, а также замену отдельных модулей в процессе эксплуатации. По оценкам специалистов, модульная конструкция лазерного дальномера обеспечивает максимум надежности и ремонтопригодности в полевых условиях.

Модуль излучателя состоит из стержня, лампы-накачки, осветителя, высоковольтного трансформатора, зеркал резонатора. модулятора добротности. В качестве источника излучения используется обычно неодимовое стекло или аллюминиево-натриевый гранат, что обеспечивает работу дальномера без системы охлаждения. Все эти элементы головки размещены в жестком цилиндрическом корпусе. Точная механическая обработка посадочных мест на обоих концах цилиндрического корпуса головки позволяет производить их быструю замену и установку без дополнительной регулировки, а это обеспечивает простоту технического обслуживания и ремонта. Для первоначальной юстировки оптической системы используется опорное зеркало, укрепленное на тщательно обработанной поверхности головки, перпендикулярно оси цилиндрического корпуса. Осветитель диффузионного типа представляет собой два входящих один в другой цилиндра между стенками которых находится слой окиси магния. Модулятор добротности рассчитан на непрерывную устойчивую работу или на импульсную с быстрым запусками. основные данные унифицированной головки таковы: длина волны - 1,06 мкм, энергия накачки - 25 Дж, энергия выходного импульса - 0,2 Дж, длительность импульса 25нс, частота следования импульсов 0,33 Гц в течение 12с допускается работа с частотой 1 Гц), угол расходимости 2 мрад. Вследствие высокой чувствительности к внутренним шумам фотодиод, предусилитель и источник питания размещаются в одном корпусе с возможно более плотной компоновкой, а в некоторых моделях все это выполнено в виде единого компактного узла. Это обеспечивает чувствительность порядка 5*10 в -8 Вт.

В усилителе имеется пороговая схема, возбуждающаяся в тот момент, когда импульс достигает половины максимальной амплитуды, что способствует повышению точности дальномера, ибо уменьшает влияние колебаний амплитуды приходящего импульса. Сигналы запуска и остановки генерируются этим же фотоприемником и идут по тому же тракту, что исключает систематические ошибки определения дальности. Оптическая система состоит из афокального телескопа для уменьшения расходимости лазерного луча и фокусирующего объектива для фотоприемника. Фотодиоды имеют диаметр активной площадки 50, 100, и 200 мкм. Значительному уменьшению габаритов способствует то, что приемная и передающая оптические системы совмещены, причем центральная часть используется для формирования излучения передатчика, а периферийная часть - для приема отраженного от цели сигнала.

4. Оптический дальномер

Оптические дальномеры - обобщенное название группы дальномеров с визуальной наводкой на объект (цель), действие которых основано на использовании законов геометрической (лучевой) оптики. Распространены оптические дальномеры: с постоянным углом и выносной базой (например, нитяной дальномер, которым снабжают многие геодезические инструменты - теодолиты, нивелиры и т. д.); с постоянной внутренней базой - монокулярные (например, фотографический дальномер) и бинокулярные (стереоскопические дальномеры).

Оптический дальномер (светодальномер) - прибор для измерения расстояний по времени прохождения оптическим излучением (светом) измеряемого расстояния. Оптический дальномер содержит источник оптического излучения, устройство управления его параметрами, передающую и приёмную системы, фотоприёмное устройство и устройство измерения временных интервалов. Оптический дальномер делятся на импульсные и фазовые в зависимости от методов определения времени прохождения излучением расстояния от объекта и обратно.

Рис. 4 - Современный оптический дальномер

 

Рис.5 - Оптический дальномер типа «Чайка»

В дальномерах измеряется не сама длина линии, а некоторая другая величина, относительно которой длина линии является функцией.

В геодезии применяют 3 вида дальномеров:

·              оптические (дальномеры геометрического типа),

·              электрооптические (светодальномеры),

·              радиотехнические (радиодальномеры).

.1 Физические основы измерений и принцип действия

Рис. 6 Геометрическая схема оптических дальномеров

Пусть требуется найти расстояние АВ. Поместим в точку А оптический дальномер, а в точку В перпендикулярно линии АВ - рейку.

Обозначим: l - отрезок рейки GM,

φ - угол, под которым этот отрезок виден из точки А.

Из треугольника АGВ имеем:

D=1/2*ctg(φ/2) (4.1.1)= l * сtg(φ) (4.1.2)

Обычно угол φ небольшой (до 1o), и, применяя разложение функции Ctgφ в ряд, можно привести формулу (4.1.1) к виду (4.1.2). В правой части этих формул два аргумента, относительно которых расстояние D является функцией. Если один из аргументов имеет постоянное значение, то для нахождения расстояния D достаточно измерить только одну величину. В зависимости от того, какая величина - φ или l, - принята постоянной, различают дальномеры с постоянным углом и дальномеры с постоянным базисом. В дальномере с постоянным углом измеряют отрезок l, а угол φ - постоянный; он называется диастимометрическим углом. В дальномерах с постоянным базисом измеряют угол φ, который называется параллактическим углом; отрезок l имеет постоянную известную длину и называется базисом.

.1.2 Нитяной дальномер с постоянным углом

В сетке нитей зрительных труб, как правило, имеются две дополнительные горизонтальные нити, расположенные по обе стороны от центра сетки нитей на равных расстояниях от него; это - дальномерные нити (рис.7).

Нарисуем ход лучей, проходящих через дальномерные нити в трубе Кеплера с внешней фокусировкой. Прибор установлен над точкой А; в точке В находится рейка, установленная перпендикулярно визирной линии трубы. Требуется найти расстояние между точками А и В.

Рис. 7 - Дальномерные нити


D = l/2 * Ctg(φ/2) + fоб + d (4.1.2.1)

где d - расстояние от центра объектива до оси вращения теодолита; об-фокусное расстояние объектива; - длина отрезка MG на рейке.

Обозначим (fоб + d) через c, а величину 1/2*Ctg φ/2 - через С, тогда

= C * l + c.  (4.1.2.2)

Постоянная С называется коэффицентом дальномера. Из Dm'OF имеем:

Ctg φ/2 = ОF/m'O; m'O= p/2 (4.1.2.3)

Ctg φ/2 = (fоб*2)/p, (4.1.2.4)

где p - расстояние между дальномерными нитями. Далее пишем:

С = fоб/p. (4.1.2.5)

Коэффициент дальномера равен отношению фокусного расстояния объектива к расстоянию между дальномерными нитями. Обычно коэффицент С принимают равным 100, тогда Ctg φ/2 = 200 и φ = 34.38'. При С = 100 и fоб = 200 мм расстояние между нитями равно 2 мм.

.1.3 Измерение нитяным дальномером наклонного расстояния

Пусть визирная линия трубы JK при измерении расстояния АВ имеет угол наклона ν, и по рейке измерен отрезок l (рис. 8). Если бы рейка была установлена перпендикулярно визирной линии трубы, то наклонное расстояние было бы равно:

= l0 * C + c  (4.1.3.1)

Но 0 = l*Cos ν (4.1.3.2)

поэтому

D = C*l*Cosν + c. (4.1.3.3)

Горизонтальное проложение линии S определим из Δ JKE:

S = D*Cosν (4.1.3.4)

или

S= C*l*Cos2ν + c*Cosν. (4.1.3.5)

рис. 8 - Измерение нитяным дальномером наклонного расстояния

Для удобства вычислений принимаем второе слагаемое равным с*Cos2ν; поскольку с величина небольшая (около 30 см), то такая замена не внесет заметной ошибки в вычисления. Tогда

= (C * l + c) * Cos2ν (4.1.3.6)

или

S = D'* Cos2ν  (4.1.3.7)

бычно величину (C*l + c) назыывают дальномерным расстоянием. Обозначим разность (D' - S) через ΔD и назовем ее поправкой за приведение к горизонту, тогда

= D' - ΔD (4.1.3.8)

где

ΔD = D' * Sin2 ν (4.1.3.9)

Угол ν измеряют вертикальным кругом теодолита; причем при  поправка ΔD не учитывается. Точность измерения расстояний нитяным дальномером обычно оценивается относительной ошибкой от 1/100 до 1/300.

Кроме обычного нитяного дальномера существуют оптические дальномеры двойного изображения.

4.2 Особенности конструкции и принцип работы

В импульсном светодальномере источником излучения чаще всего является лазер, излучение которого формируется в виде коротких импульсов. Для измерения медленно меняющихся расстоянии используют одиночные импульсы, при быстро изменяющихся расстояниях применяется импульсный режим излучения. Твердотельные лазеры допускают частоту следования импульсов излучения до 50-100 Гц, полупроводниковые - до 104-105 Гц. Формирование коротких импульсов излучения в твердотельных лазерах осуществляется механическими, электрооптическими или акустооптичекими затворами или их комбинациями. Инжекционные лазеры управляются током инжекции.

В фазовых светодальномерах в качестве источников света применяются накальные или газосветные лампы, светодиоды и почти все виды лазеров. Оптический дальномер со светодиодами обеспечивают дальность действия до 2-5 км, с газовыми лазерами при работе с оптическими отражателями на объекте - до 100 км, а при диффузном отражении от объектов - до 0,8 км; аналогично, Оптический дальномер с полупроводниковыми лазерами обеспечивает дальность действия 15 и 0,3 км. В фазовых Светодальномерное излучение модулируется интерференционными, акустооптическим и злектрооптическими модуляторами. В СВЧ фазовых оптических дальномерах применяются электрооптические модуляторы на резонаторных и волноводных СВЧ структурах.

В импульсных светодальномерах обычно в качестве фотоприёмного устройства применяются фотодиоды, в фазовых светодальномерах фотоприём осуществляется на фотоэлектронные умножители. Чувствительность фотоприёмного тракта оптического дальномера может быть увеличена на несколько порядков применением оптического гетеродинирования.

Измерение временных интервалов чаще всего осуществляется счётно-импульсным методом.

Вывод

Дальномер - является лучшим прибором для измерения расстояния на длинные дистанции.

Дальномер тахеометра характеризуется не только точностью, но и дальностью. Как правило, это дальность измерения расстояний до одной призмы. Следует отметить, что эти характеристики связаны друг с другом.

Несмотря на то что значительная часть объема измерений тахеометром не превышает 500-1000 м, периодически приходится измерять значительно более длинные расстояния. Поэтому наилучшими сегодня являются дальномеры с точностью измерений не ниже 2 мм + 2 ррм при дальности 3000-4000 м. Эти параметры должны стать стандартными в будущем для большинства тахеометров. Увеличение дальности измерений в ущерб точности нецелесообразно и неэффективно.

Ожидается, что в целом на мировом рынке в ближайшем будущем стоимость самого оборудования снизится, а встроенных программных средств и их приложений повысится. Стоимость сервиса и запасных частей также должна снизиться вследствие увеличения надежности работы приборов и продления срока их жизнедеятельности. Однако затраты на обучение и поддержку пользователей, очевидно, увеличатся из-за усложнения конфигурации систем, возможностей их модернизации и многофункционального применения.

Список литературы

1. Герасимов Ф.Я., Говорухин А.М. Краткий топографо-геодезический словарь-справочник,1968;М Недра

2. Лемтюжников Д.С. Элементарный курс оптики и дальномеров <http://scilib.narod.ru/Military/Lemtuzhnikoff/Lemtuzhnikoff.djvu>, Воениздат, 1938, 136 с.

. Интернет магазин оптики. Принципы работы лазерного дальномера. URL: <http://www.optics4you.ru/article5.html>

Похожие работы на - Особенности свойств аморфного углеродного материала как носителя электродных катализаторов для топливных элементов

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!