Эколого-химические и аналитические проблемы закрытых помещений

  • Вид работы:
    Дипломная (ВКР)
  • Предмет:
    Экология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    930,42 kb
  • Опубликовано:
    2011-11-13
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Эколого-химические и аналитические проблемы закрытых помещений

Глава 1. ЭКОЛОГО-ХИМИЧЕСКИЕ И АНАЛИТИЧЕСКИЕ ПРОБЛЕМЫ ЗАКРЫТОГО ПОМЕЩЕНИЯ

Качество воздушной среды определяется степенью ее загрязненности посторонними химическими веществами. Эти вещества поступают в воздушную среду в результате работы промышленных предприятий, транспорта и из других источников, а затем через вентиляционные системы зданий попадают внутрь жилых помещений. Здесь они смешиваются и вступают в реакции с веществами, образующимися в процессе жизнедеятельности организма человека, работы бытовых приборов, выделений из различных предметов, мебели, ковров. В итоге качество воздушной среды жилых помещений может оказаться значительно хуже, чем городского атмосферного воздуха. Эти проблемы можно перенести на любой замкнутый объем помещения.

Исследования показали, что человек до 95% всего времени пребывает в закрытом помещении: место работы, транспорт, квартира, место отдыха или досуга. Более или менее продвинутой областью является контроль за воздухом рабочей зоны на промпредприятии (за нормативными показателями качества воздушной среды в цехах, шахтах следят соответствующие санитарные службы). Что касается эколого-химических проблем воздушной среды квартиры, офиса и других закрытых помещений, то внимание к ним проявилось в 70-е годы во время энергетического кризиса. В то время для обогрева жилища использовали далеко не чистые в экологическом отношении энергоносители, и при неблагоприятных метеорологических условиях качество воздушной среды как в атмосфере города, так и в закрытом помещении порой было ниже допустимых норм.

Как правило, в воздухе жилых и производственных помещений постоянно присутствует бытовая пыль, оксиды углерода, азота и серы, озон, радон, компоненты табачного дыма, десятки различных летучих органических соединений (ЛОС), микроорганизмы. Причем эти загрязнители в результате различных химических реакций, происходящих в воздухе помещений, могут превращаться в более токсичные, что в итоге приводит к неконтролируемому ухудшению самочувствия людей и повышает степень риска возникновения различных заболеваний. Комплекс факторов, связанных с высокой загрязненностью воздуха помещений и вследствие этого с жалобами населения, получил название "синдром больных зданий".

Существует множество источников загрязнения воздушной среды в замкнутом объеме помещения. К основным относятся строительно-отделочные материалы (табл. 1), внутренняя обстановка помещения (предметы быта, приборы, мебель, ковры), высокотемпературные источники, жизнедеятельность организма человека.

Наибольшую опасность представляют строительно-отделочные материалы, особенно на полимерной основе. Дело в том, что при создании по современным технологиям строительных материалов и конструкций на их основе используют в качестве добавок отходы и шлаки химической и металлургической промышленности. При этом решаются проблемы удешевления этих материалов, то есть экономические, повышения их прочности и, что не менее важно, сокращается объем отходов, загрязняющих окружающую среду. Однако вместе с решением одних экологических проблем возникают другие - строительные материалы, изготовленные с применением химических отходов, зачастую сами являются источником загрязнения внутреннего пространства зданий. Отсюда возникает необходимость изучения влияния строительных материалов как потенциальных источников загрязнения на качество воздушной среды помещения (квартиры, офиса). Используя высокочувствительные методы химического анализа, удалось обнаружить и идентифицировать летучие соединения, которые мигрируют из стройматериалов после их изготовления в воздушную среду.

В перечень ЛОС входят соединения фосфора, серы, фтора, фенол, стирол, толуол, органические кислоты, ксилолы, формальдегид, ацетон, аммиак. Номенклатура стройматериалов, изготовленных на основе полимеров или с их применением, содержит в настоящее время около 100 наименований. Конечно, материалы на основе полимеров имеют высокие технологические качества и потребительские характеристики. Тем не менее они являются источником миграции токсикантов в воздушную среду. Так, поливинилхлоридные материалы (панели, пленки, покрытия для пола) выделяют в воздух бензол, толуол, этилбензол, ксилол, циклогексан, бутанол.

Особенно сильно загрязняют воздушную среду древесно-волокнистые плиты, изготовленные с использованием фенолформальдегидных и мочевиноформаль-дегидных смол. Из таких плит происходит миграция фенола, формальдегида, аммиака. Ковровые покрытия выделяют стирол, ацетофенон, сернистый ангидрид. Из материалов, изготовленных на основе стеклопластиков, происходит эмиссия ацетона, метакриловой кислоты, толуола, бутанола, формальдегида, фенола, стирола. Лакокрасочные покрытия являются источником целого букета ароматов, связанных с ЛОС, относящимися к различным классам и обладающими различным уровнем токсического воздействия на организм человека. Таким образом, новая квартира или квартира и офис после ремонта могут представлять экологическую опасность, если при этом использовали современные материалы.

Сейчас сформулированы общие требования к качеству стройматериалов в отношении их санитарно-гигиенических норм. Они не должны создавать в помещении специфического запаха и выделять летучие вещества при обычных условиях их эксплуатации. Если миграция летучих компонентов понемногу и происходит, то их общая концентрация не должна превышать ПДК для атмосферного воздуха жилых помещений. Отсюда возникает проблема оценки динамики эмиссии химических загрязнителей из строительных и отделочных материалов в зависимости от различных факторов (температуры, влажности), а также определения уровня загрязнения воздушной среды в здании в результате такой эмиссии.

К источникам миграции токсических веществ в воздушную среду помещений относятся также мебель, одежда, обувь, бытовая техника и другие предметы интерьера, которые могут выделять ЛОС, поскольку чаще всего они изготавливаются из полимерных материалов (поливинилхлоридные, поли-изобутиленовые, полиизопреновые, бутадиен-стироль-ные, винилсилоксановые, фенилвинилсилоксановые и фторорганические каучуки и резины). Клеевой состав на основе бутилкаучуковых мастик (используемых для укладки керамических плиточных покрытий, крепления линолеумов, текстильных ковровых покрытий) источает бензол, толуол, ксилол и некоторые другие ароматические углеводороды, причем их содержание в воздухе помещения может превышать ПДК в несколько раз.

Из источника эмиссии загрязнителей неорганической природы, имеющих потенциальную экологическую опасность, отметим радон и асбест в виде мельчайших частиц пыли. В замкнутом объеме радон - радиоактивный газ, поднимающийся из разломов земной коры и попадающий из подвалов в вышележащие этажи по лестничным клеткам или вентиляционным каналам, становится опасным. Источником радона могут быть и строительные материалы, например гранит, используемый в фундаментах или для облицовки зданий. Широко применяемый ранее как компонент строительно-отделочных материалов асбест теперь из-за своих канцерогенных свойств повсеместно запрещен к применению в строительстве и многих других сферах, однако уже использованные при строительстве или ремонте асбестсодержащие стройматериалы пока еще эксплуатируются.

Загрязнение воздушной среды закрытого помещения происходит еще и естественным путем, и причиной тому является сам человек. В процессе его жизнедеятельности в окружающую среду выделяются конечные продукты обмена веществ. Давно известно, что выдыхаемый воздух содержит N2, O2, H2O, CO2 и немного CO. Однако биохимики, используя современные методы анализа, установили, что кроме этих компонентов в выдыхаемом воздухе содержится более ста различных летучих соединений, присутствующих в ничтожно малых количествах. Поскольку многие из этих соединений проявляют определенную токсичность, они получили название антропотоксинов.

Было установлено, что ухудшение самочувствия людей наступает задолго до критического уровня содержания СО2 в воздухе, что связано с наличием в нем ан-тропотоксинов. В то же время в качестве интегральных показателей загрязненности воздуха продуктами жизнедеятельности организма человека используют содержание СО2, NH3 и некоторых ЛОС, хотя эти показатели и не являются универсальной характеристикой загрязненности, так как состав антропотоксинов существенно изменяется в зависимости от некоторых факторов, порой трудноконтролируемых.

В обычных условиях антропотоксины, как правило, не снижают работоспособности человека, поскольку при достаточном разбавлении атмосферным воздухом их концентрация в окружающей среде невысока. Однако в закрытом пространстве накопление антропо-токсинов ведет к снижению работоспособности человека, появлению тягостных ощущений, снижению функциональных возможностей организма.

Среди газообразных соединений, выделяемых организмом человека, наибольший вклад в формирование окружающей его газовой среды имеют оксид углерода (СО), алифатические углеводороды (прежде всего СН4, С2Н6), NH3, амины, альдегиды, кетоны, спирты, фенолы и жирные кислоты. Физическая нагрузка, микроклимат, режим питания, степень воздухообмена и другие факторы влияют на интенсивность образования и выведения из организма антропотоксинов. Например, при выполнении тяжелой физической работы выделяется в десять раз больше оксида углерода, чем в состоянии покоя. Исследования, проведенные в 60-70-х годах, показали, что в выдыхаемом воздухе человека присутствуют ацетон, ацетальдегид, изопрен, метанол, этанол, метилфуран, пропиловый и изовалериановый альдегиды, диметил- и диэтилсульфиды, метилмеркаптан, сероводород, сероокись углерода и сероуглерод (последний, как известно, является опасным нейротоксином). Нужно отметить, что содержание отдельных органических компонентов в выдыхаемом воздухе колеблется в довольно широком диапазоне - от 0,06 до 50 мг/м3 и зависит еще и от состояния здоровья человека. После усовершенствования методики концентрирования органических микропримесей в выдыхаемом воздухе и использования совершенной аппаратуры обнаружили соединения, которые трудно было ожидать, например: о-нитротолуол, циклогексадиен, кумарин, метилнаф-талин, нонан, терпены, то есть представителей большинства классов органических соединений. Более 50% общего содержания обнаруженных компонентов приходится на ацетон (1,3 мг/м3), изопрен (0,33 мг/м3) и ацетонитрил (0,24 мг/м3). Накопление этих веществ в условиях закрытого помещения и при большом скоплении людей может привести к их самоотравлению. Подобные явления отмечались, в частности, при длительном пребывании человека в космических аппаратах, подводных лодках. В результате 30-суточного эксперимента с одним испытателем в кабине космического корабля "Меркурий" в воздушной среде было обнаружено 59 различных антропотоксинов при общем содержании органических компонентов менее 0,5 мг/м3. Близкие к этим результатам были получены и в опытах на борту космического корабля "Союз-22".

Особенно неблагоприятная экологическая обстановка с воздушной средой возникает в спортивных залах во время тренировок и показательных выступлений спортсменов, особенно при плохой вентиляции и большом скоплении зрителей. При этом наблюдается и заметное загрязнение среды различными микробами.

При выполнении тяжелой физической нагрузки выделение с выдыхаемым воздухом ацетона и аминов, например, возрастает в два раза, алифатических углеводородов - в три раза, оксида углерода и фенолов - в пять раз, аммиака - более чем в шесть раз по сравнению с выделением этих веществ у лиц, находящихся в покое.

Наконец, источником загрязнения воздушной среды в жилом помещении являются плиты, печи или камины. При сгорании природного газа расходуется много кислорода и выделяются загрязняющие вещества. При неполном сгорании органического топлива кроме оксида углерода образуются еще и полиароматические углеводороды, насчитывающие сотни соединений, среди которых многие - канцерогены. Канцерогены образуются и при курении. Например, в табачном дыме содержатся фенантрен, его алкильные замещенные, 1,2-бенз(а)пирен (до 30 нг в дыме одной сигареты). При горении сигареты, кроме того, образуется оксид азота, КО. Хотя он и существует в воздухе короткое время, тем не менее успевает прореагировать с органическими аминами, которыми богаты пищевые продукты. В результате этой реакции образуются нитрозоами-ны - одни из самых сильных канцерогенов. Расхожий штамп "курить - здоровью вредить" (особенно на кухне) приобретает таким образом еще более устрашающее звучание.

Химический состав воздуха внутри помещений, как оказалось, формируется не только за счет естественных и антропогенных факторов, но и в результате различных химических превращений с участием загрязнителей. Эти превращения связаны не только с высокотемпературными источниками, упомянутыми выше.

Так, под влиянием ультрафиолетового излучения или в присутствии следов озона и оксидов азота в воздушной среде углеводороды, особенно непредельные или ароматические, подвергаются трансформации. Например, при деструкции в этих условиях малотоксичного пентана образуются 26 новых соединений с более высокой токсичностью, среди которых обнаружены формальдегид, ацетальдегид, другие альдегиды, акрилонитрил, муравьиная кислота. При деструкции фенола обнаружены 25 соединений, в том числе нитрофенол, бензальдегид, ацетофенон, ацетальдегид. При воздействии ультрафиолетового облучения образуется атомарный кислород, который затем участвует во вторичных реакциях окисления углеводородов с образованием альдегидов, кетонов и других кислородсодержащих соединений. В этих реакциях могут участвовать и оксиды азота. Интересно отметить, что подобные реакции протекают на солнечном свету в зоне промышленных выбросов и на автомагистралях. Образовавшиеся альдегиды могут затем поступать с атмосферным воздухом в жилые дома через систему вентиляции.

Другим инициатором превращений ЛОС является озон. Обнаружено, что при озонировании воздуха помещений химические загрязнители, мигрирующие из полимерных материалов, превращаются в различные токсичные соединения, отсутствующие первоначально, до озонирования. Поскольку О3 относится к сильным окислителям, то его используют для устранения некоторых примесей в воздушной среде, в частности следов табачного дыма. В самом табачном дыме обнаружено около 2000 компонентов, из которых более 100 обладают токсичностью. Адсорбируясь на поверхности стен, полов, мебели, они затем возвращаются в воздушную среду, загрязняя ее. В специальных экспериментах с озонированием воздуха в таком помещении идентифицировано около 93 ЛОС: формальдегид, ацетон, изопрен, бензол, толуол, ксилол, стирол, фенол и другие - с их общимсодержанием ~ 5,4 мг/м3. Озонирование воздуха, содержащего табачный дым, приводит к увеличению концентрации кислородсодержащих соединений. Отсюда следует вывод, что проводить озонирование воздушной среды помещения, содержащей табачный дым, не следует.

Таким образом, необходимо в совокупности учитывать факторы риска, которые могут способствовать повышению степени экологической опасности жилой среды и ухудшению комфортности среды обитания человека. Неудачное стечение обстоятельств (отсутствие вентиляции или систем воздухоочистки, метеоусловия) может привести к чрезвычайной ситуации, в которой будет происходить заболевание людей, особенно в районах новых жилых застроек. Поэтому необходимы оценка потребительских качеств жилья или офиса и соответствие их санитарно-гигиеническим нормам. Эти задачи решаются средствами аналитической химии.

Для оценки степени загрязнения воздуха в помещении аналитики вначале использовали обычные инструментальные методы, позволяющие в условиях стационарной лаборатории определить с высокой чувствительностью содержание микрокомпонентов. Затем появились переносные портативные приборы, позволяющие без особых хлопот провести замеры воздуха в любой точке закрытого помещения. При этом применяли поглотительные трубки, наполненные сорбентом, или их наборы, через которые насосом прокачивали воздух. Наполнители-сорбенты избирательно концентрировали микрокомпоненты воздуха. Затем в стационарных лабораториях проводили определение сконцентрированных микрокомпонентов воздуха, используя методы газовой хроматографии. За счет предварительного концентрирования на сорбентах достигалась высокая чувствительность определения. Были разработаны специальные сорбенты для поглощения формальдегида, оксидов азота, углерода.

Для определения вредных летучих примесей и санитарно-гигиенических характеристик полимерных материалов широкое распространение получает так называемый газохроматографический парофазный анализ (head 8раее analysis). Этот эффективный метод позволяет определять концентрации (С,), покидающих полимерный материал веществ во времени, то есть в процессе эмиссии. Количественное описание процесса основывается на экспоненциальной зависимости Ci ЛОС в газовой фазе от времени (t)

С = Сехр[(1 - t) К

где С0 - концентрация ЛОС в начале измерения, К - константа, описывающая скорость испарения ЛОС из твердой матрицы материала.

Кроме этого подхода применяют метод выдувания- улавливания, основанный на исчерпывающем извлечении ЛОС из полимерного материала. Выдувают инертным газом, а улавливают в специальной криогенной ловушке, из которой затем проба поступает в хроматограф. Парофазный анализ позволяет установить время, за которое образец материала перестает дышать в атмосферу летучими загрязнителями. Вообще ЛОС, обусловливающие аромат закрытых помещений, продолжают привлекать внимание исследователей и сейчас.

Разработаны методы, позволяющие определять содержание летучих органических загрязнителей непосредственно на месте (on site), то есть прямо в помещении. Среди простейших средств внелабораторного аналитического контроля качества воздушной среды получили развитие так называемые тест-методы. Появились тест-наборы: индикаторные трубки, полоски бумаги или полимерного материала, ленты, таблетки, на которых закрепляются индикаторные составы (специальные реагенты). Эти трубки, в частности, выполняют роль своего рода химического дозиметра (персонального экспонометра) и дают интегральную оценку потребленного загрязнителя.

Сейчас предпринимаются попытки создать индикаторные бумаги - биотесты с иммобилизованными ферментами для определения ЛОС, являющихся ингибиторами этих ферментов. Такие биотесты представляют интерес при проведении скрининга ЛОС - ингибиторов ферментов.

Полагают, что для оценки качества воздушной среды в закрытом помещении в будущем найдут широкое применение биосенсоры или биодатчики, работающие на принципах биосенсоров, но дающие отклик на присутствие загрязнителя типа "да" или "нет" ("зеленый" или "красный"). К этим биосенсорам предъявляются некоторые требования. Они должны быть простыми, безопасными, недорогими, портативными, персонального действия, надежно измерять концентрацию загрязнителя и одновременно время экспозиции, а отсюда и суммарную полученную дозу. Появление таких устройств сделает массовым анализ воздушной среды. Тогда обитатель квартиры сам сможет ее обследовать и не вызывать специалистов из контрольно-аналитических служб.

ГЛАВА 2. КОМНАТНЫЕ РАСТЕНИЯ И ИХ РОЛЬ В ОЗДОРОВЛЕНИИ ВОЗДУХА ПОМЕЩЕНИЙ

В наше время многие люди обеспокоены микробиологической чистотой воздуха помещений. Проблема бактериальной и грибковой загрязненности является актуальной, так как человек проводит в закрытом помещении более 80% суточного времени и постоянно контактирует с микрофлорой и микобиотой воздуха. В концентрациях, превышающих рекомендованные нормы, бактерии и плесневые грибы способствуют развитию многих инфекционных заболеваний, различных микозов (особенно бронхо-легочных), провоцируют аллергические реакции.

На рынке представлен большой ассортимент отечественных и импортных воздухоочистителей, фильтров, озонаторов, ионизаторов, увлажнителей и других приборов, призванных очистить воздух от условно-патогенных, патогенных микроорганизмов и спор грибов, и таким образом улучшить его качество. Но даже самые современные технические средства не всегда обеспечивают здоровую воздушную среду. Кроме того, зачастую их стоимость колеблется от нескольких сотен до нескольких тысяч долларов и это без учета регулярного технического обслуживания, смены фильтров.

Не будем забывать о более доступном и традиционном способе оздоровления воздушной среды закрытых помещений с помощью растений. В его основе лежит подбор и размещение растений с выраженным бактерицидным, фунгицидным, антивирусным действием. Многие виды растений поглощают токсичные для человека газообразные соединения, увлажняют воздух.

Фитонцидная активность растений зависит не от концентрации летучих веществ, а от их химического состава. Одна из важнейших особенностей фитонцидов - специфичность их действия. Даже в микроскопических количествах они могут задерживать рост и размножение одних микроорганизмов, стимулировать рост других и таким образом играть существенную роль в регулировании состава микрофлоры воздуха.

Если вы используете комнатные растения с целью улучшения качества воздуха, важно знать, что выделение летучих веществ зависит от многих факторов:

систематической принадлежности растений;

возраста;

физиологического состояния;

эколого-биологических особенностей;

условий выращивания.

Фитонцидная активность растений колеблется в течение года. Максимальна она в период интенсивного роста и в начале бутонизации. В период бутонизации активность наивысшая, а к концу вегетации (ноябрь-декабрь) снижается. Для профилактики распространения инфекций важно, что фитонцидная активность комнатных растений проявляется в зимне-весенний период, так как именно в это время возрастает число острых респираторных заболеваний. Наибольшее количество летучих веществ и наиболее интенсивно выделяют молодые органы растений. Например, еще не вполне развившиеся листья с тонкими покровными тканями выделяют больше летучих веществ, чем сформированные, более старые. Неодинаковое количество летучих веществ выделяют и различные органы растений: листья, бутоны, цветы. Фитонцидные свойства сильнее всего выражены в тканях листа и стенках завязи.

Имеются данные о суточных колебаниях количества выделяемых фитонцидов. Повышение фитонцидности начинается в утренние часы и резко нарастает днем. Затем активность начинает снижаться, резко падает вечером и достигает минимума ночью. В темноте растения практически полностью прекращают выделять фитонциды.

Сильно влияет на образование фитонцидов освещенность. Процесс выделения фитонцидов зависит от температуры воздуха. Так, повышение температуры окружающего воздуха до 20-25°C способствует возрастанию концентрации этих соединений в 1,8 раза. Понижение температуры воздуха отрицательно сказывается на выделении растениями летучих веществ.

Проанализировав литературные данные за последние 40 лет, были составлен ассортимент растений, которые целесообразно использовать в профилактических и лечебных целях в жилых и общественных помещениях:

группа - растения, летучие выделения которых обладают выраженной антибактериальной, антивирусной, антифунгальной активностью в отношении воздушной микрофлоры, например, плющ обыкновенный (рис. 1.), аукуба японская, пеперомия туполистная (рис. 2.), другие;

Плющ обыкновенный - Hedera helix

Рисунок 1


Пеперомия туполистная - Peperomia obtusifolia

Рисунок 2


2 группа - растения, летучие выделения которых повышают иммунитет, обладают успокаивающими и противовоспалительными и другими лечебными действиями, например, мирт обыкновенный, розмарин лекарственный, лимон, герань душистая, лавр благородный;

группа - растения-фитофильтры, поглощающие из воздуха вредные газы, например, хлорофитум хохлатый (рис. 3.), фикус Бенджамина, некоторые виды семейства бромелиевых.

очистка воздух комнатный растение технический

Хлорофитум хохлатый - Chlorophytum comosum

Рисунок 3


Важно знать, что в озеленении помещений, особенно детских и спальных комнат не следует использовать растения с ядовитым соком и аллергизирующим действием. Сок алоказии, диффенбахии и молочая содержит синильную кислоту, ядовитую смолу, канцерогенные вещества. В России и за рубежом зарегистрированы случаи отравлений детей и взрослых соком диффенбахии и алоказии. К растениям с выраженным аллергизирующим действием относится примула обратноконическая, непосредственный контакт с листьями которой может вызвать реакцию в виде покраснения кожных покровов, жжения, зуда и даже появления пузырьков, как после ожога (аллергический дерматит). Как правило, ассортимент для озеленения подбирается спонтанно, ядовитые растения используются бесконтрольно, поскольку люди не знакомы с особенностями этих растений.

Для малогабаритных квартир в панельных домах, характеризующихся относительно малой освещенностью, низкой влажностью воздуха, особенно зимой и, как правило, высокой микробной обсемененностью воздуха можно порекомендовать неприхотливые растения с выраженной фитонцидной активностью. Это представители родов: алоэ, толстянка, пеперомия, сансевьера, плющ, эпипремнум, циссус, каланхоэ, бегония.

Для помещений, расположенных на первых этажах старых домов, как правило, затемненных и сырых, характерно повышенное содержание в воздухе микроскопических плесневых грибов. В таких помещениях рекомендуется выращивать, в первую очередь, бегонии, которые обладают выраженными антифунгальными свойствами, а также являются теневыносливыми. Кроме того, к этим условиям могут приспособиться: «солнечное дерево» - аукуба японская (растение теневыносливое, хотя некоторые виды и имеют пестролистную окраску), кофе, мирт, лавр, монстера, плющ, лимон, фикус.

При размещении растений в помещениях следует учитывать особенности фитогенного поля. Фитогенное поле - это часть пространства, в пределах которой среда приобретает новые свойства, определяемые присутствием в ней данного растения. По данным проведенных исследований радиус фитонцидного и антифунгального действия достигает 5 м. В отношении бактерий и грибов максимальная активность фитогенного поля сохраняется на расстоянии до 3 м (70%), дальше она заметно уменьшается. На расстоянии 5 м она в 2 раза ниже, чем вблизи растений (до 34%).

Использование комнатных растений для оздоровления внутренней среды помещений принципиально отличается от действия современных технических средств очистки воздуха. По воздействию на наиболее распространенный в закрытых пространствах условно-патогенный микроорганизм - стафилококк, летучие выделения некоторых видов растений оказались эффективнее, чем технические устройства и дезинфицирующие средства. Помимо чисто утилитарных свойств, комнатные растения оказывают гармонизирующее действие на человека: позволяют прикоснуться к живой природе в условиях «каменных джунглей», радуют ростом и цветением, успокаивают приятным для глаз зеленым цветом.

Глава 3. Экология жилища. Факторы риска

Из всех факторов окружающей среды атмосферный воздух наиболее значим для здоровья человека. К сожалению, лишь малая часть современного населения земли дышит чистым воздухом. Атмосфера крупных городов и промышленных центров содержит значительное число вредных для здоровья примесей. Источники этих загрязнений - созданные самим человеком промышленные предприятия (особенно металлургические и химические производства), а также теплоэнергетика и транспорт.

Состав загрязняющих примесей в атмосферном воздухе вокруг крупного предприятия целиком зависит от вида производства и уровня его технологии. Вместе с тем, в современных мегаполисах первенство по загрязнению воздуха прочно удерживается автомобильным транспортом (до 80% от общей суммы загрязняющих веществ).

Воздух закрытых помещений

В воздухе помещений существует та же смесь химических веществ, что и снаружи. Отличие заключается в их концентрации и недостатке средств очистки воздуха. Вот наиболее часто встречающиеся источники загрязнения:

конструкции здания и оборудование интерьеров выделяют опасные для здоровья вещества, такие как формальдегид, фенол, стирол и т.п. Источниками загрязнения могут служить стены, потолки, мебель (особенно из ДСП), ковры, а также всевозможные искусственные покрытия, лаки и краски;

химические вещества, случайно попавшие в помещение, в том числе оставшиеся на одежде после химчистки (главным образом, перхлорэтилен), углеводороды от автомобильных выхлопов, осевшие на одежде и др.;

табачный дым, в состав которого входят 3600 химических веществ;

органические вещества, источниками которых являются насекомые, домашние животные и т.п.;

плесень, грибки и бактерии.

Для того чтобы химические вещества стали реально опасными для здоровья, их доза должна превысить предельно допустимый уровень. Однако даже небольшое количество загрязняющих воздух веществ вызывает неблагоприятные последствия, если время их воздействия достаточно велико. Эти негативные влияния на организм человека сказываются настолько постепенно, что их порой трудно связать с той причиной, которая их вызвала. Так, например, мало кто может предположить, что учащение приступов головной боли у человека вызвано переездом в другой дом или установкой в квартире новой мебели. Взрослые, как правило, не рассматривают в качестве причины детской аллергии загрязненный воздух в детской, которым ребенок дышит с самого рождения.

Воздух теряет свою "свежесть" после прохождения через фильтры систем вентиляции и кондиционеры. В результате уровень содержания озона и ионов снижается на 90%. Следствием недостатка этих природных компонентов являются жалобы людей на частую головную боль, слабость и плохое самочувствие (так называемый "синдром закрытых помещений"). В то же время обнаружено, что при реактивации воздуха (добавлении в него озона) полученный эффект соответствует прогулке на свежем воздухе в течение двух часов. Кроме того, наблюдается рост мыслительных способностей и улучшение общего самочувствия.

Меры по улучшению качества воздуха в помещении

Самый простой и традиционный способ - проветривание помещений. При этом нужно учитывать, что воздух за окном тоже загрязнен. Поэтому желательно проветривать помещение ранним утром, когда уличное движение минимально и вечерняя пыль осела, а также после дождя (особенно после сильной грозы). Более сложные и эффективные способы очистки воздуха связаны с устранением внутриквартирных источников загрязнения воздуха:

если есть возможность, следует заменить газовую плиту на электрическую;

при наличии на кухне газовой плиты следует отрегулировать горелки (пламя должно быть голубым);

в газовых плитах должны быть установлены конфорки с высокими ребрами, что обеспечит более полное сгорание газа;

полезно установить над газовой или электроплитой очиститель воздуха;

если финансовое положение позволяет, обеспечить отделку интерьеров покрытиями из натуральных компонентов и оборудовать мебелью из экологически чистых материалов;

при проведении так называемого "евроремонта" не следует злоупотреблять синтетическими материалами. Часто оказывается, что они создают самую загрязненную атмосферу в помещениях;

для теплоизоляции вместо асбеста и пенопласта рекомендуется использовать стекловолокно;

средства бытовой химии следует хранить герметично закрытыми в нежилых зонах (сарай, гараж и т.п.).

Следует иметь в виду, что многие виды растений эффективно очищают воздух в помещениях.

Комнатные растения очищают воздух

Движимые борьбой за выживание, растения чутко улавливают отрицательные изменения состояния среды и приспосабливаются к ним. Адаптируясь к внешней ситуации, комнатные растения в то же время сами оказывают воздействие на собственное окружение. Создавая для себя благоприятные условия существования, они, тем самым, активно участвуют в поддержании необходимого уровня комфортности в помещениях.

В процессе своей жизнедеятельности растения осуществляют детоксикацию вредных веществ различными способами. Одни вещества связываются цитоплазмой растительных клеток, благодаря чему становятся неактивными. Другие подвергаются превращениям в растениях и становятся нетоксичными, после чего включается метаболизм растительных клеток и используются для нужд растения.

Для того чтобы получить от комнатных растений максимальный эффект очистки воздуха, им необходимо обеспечить оптимальные условия существования, включающие в себя режим освещения, температуры, влажности, а также состав почвы. Кроме того, их необходимо вовремя подкармливать и пересаживать. Особенно важно регулярно смывать пыль с растений. Это несложная процедура повышает эффективность использования растений. В результате воздух в комнате станет в среднем на 40% чище, чем там, где растений нет.

Используя растения в качестве естественных воздухоочистителей, следует учитывать, что увлажненные листья поглощают газы в 2-3 раза интенсивнее сухих. А вот опушенность листьев способствует удалению из атмосферы пыли, препятствуя при этом газопоглощению.

Существует также прямая связь между температурой и способностью листьев к поглощению газов. При температуре более 25 градусов интенсивность поглощения газа в среднем в 2 раза выше, чем при 13 градусах. Кроме того, древесные растения осуществляют газообмен в 3-10 раз интенсивнее, чем травянистые, растущие на такой же площади.

Для растений существует предельное насыщение определенным вредным веществом (например, аммиаком), после чего дальнейшая его переработка в корнях и листьях уменьшается или остается на неизменном уровне. Усиление целебных свойств эфироносных растений (лавра, герани, розмарина, сантолина, кипарисового) достигается при помощи биостимуляторов. Для этого не менее 2-х раз в неделю в воду для полива добавляют гетероауксин и раствор глюкозы ( по 5 мл на 5 литров воды) и 2 раза в месяц - аспирин (5 граммов на 1 литр воды).

Удаление из окружающей среды этилена осуществляется не только растениями, но и почвенными микроорганизмами, наибольшее количество которых находится в богатых гумусом почвах.

Внесение в почву и опрыскивание листьев растворами таких микроэлементов, как медь и железо, способствуют увеличению скорости детоксикации фенолов. Готовые составы с микроэлементами всегда имеются в цветочных магазинах. Если светолюбивые растения стоят в квартире дальше 1-1,5 метров от окна, необходимо подумать о подсветке их специальными лампами для растений. Лучше всего для этой цели подходят галогеновые светильники, так как спектральный состав их света наиболее близок к солнечному. Заметно улучшают самочувствие растения, восполняющие нехватку отрицательно заряженных ионов кислорода: хвойные, цереусы, кротоны. Ионизируют воздух также комнатные фонтанчики. Все растения уменьшают сухость воздуха, которая присуща помещениям с центральным отоплением.

Загрязняющее вещество

Источник загрязнения

Биологические очистители

Двуокись азота

Уличный воздух-автотранспорт

Все растения

Окись углерода

Уличный воздух-автотранспорт, газовая плита

Традесканция, проростки кукурузы, фасоли. Почвенные, бактерии при 30 градусах

Фенол

Полимерные материалы, мебель из ДСП

Спатифиллюм, сингониум, солянум

Формальдегид

Полимерные материалы

Хлорофитум хохлатый, сингониум, драцена

Стирол

Теплоизоляция (пенопласт)

-

Дибулфталат

Полимерные строительные и отделочные материалы

-

Бензол, толуол, этилбензол,ксилол,циклогексанон

Полимерные строительные материалы, растворители лаков и красок

Хлорофитум, драцена, сансевиерия трехполосная, плющ обыкновенный

Ацетон, этилацетат

Лак для ногтей, жидкости для снятия лаков и красок

Листья и корни всех растений, стимулируется светом

Ацетамид

Гардины и занавеси из полимерного волокна (у горячих батарей). Поролон

-

Винилхлорид

Изделия из полихлорвинила (плащи, пакеты и т.п.)

-

Пербораты

Моющие средства

-

Этаноламин

Составы для ванн

-

Гексахлорофен

Дезодоранты

-

Трихлорэтилен, перхлорэтилен

Химчистка одежды. Растворители

Эпипремниум перистый, фикус Бенжамина, плющ

-

Аглаонема, пелея Кадье, диффенбахия пестрая, гибискус, карликовый фикус, каланхое, хвойные, цитрусовые, пиперония

Пыль

-

Все растения, особенно опушенные


Технические средства очистки воздуха

При невозможности регулярного проветривания помещений чаще всего применяют систему вентиляции и кондиционирования. В простейшем случае бытовой кондиционер регулирует только температуру воздуха, а из очищающих устройств имеет противопылевой фильтр. При этом воздух отбирается из помещения и в него же возвращается. Притока внешнего атмосферного воздуха нет. Никакой очистки воздуха от вредных газов и паров в данном случае не происходит. Более того, внутренний объем кондиционера - прекрасная среда для развития болезнетворных бактерий и грибков.

Системы вентиляции, в отличие от кондиционеров, подают в помещение внешний атмосферный воздух, который может предварительно подогреваться (или охлаждаться), увлажняться и очищаться от пыли. Процесс поглощения пыли производится с помощью пористого бумажного или тканевого фильтра. Особенно важно, что фильтры задерживают тонкие фракции пыли - менее 5-10 мкм, которая может глубоко проникать в бронхи и легкие, не задерживаясь в носоглотке. В то же время, перечисленные фильтры не поглощают пары и газы.

Для очистки воздуха от вредных газов и парообразных примесей можно применять сорбционные фильтры (широко известен активированный уголь). Однако такой фильтр требует регулярной замены или регенерации. Поэтому он сравнительно дорог и не очень удобен в эксплуатации. К недостаткам очистки фильтрами (бумажными, ватными, тканевыми и т.д.) относится полная потеря воздухом содержащихся в нем легких ионов. Опытами профессора А.Л.Чижевского было впервые доказано, что животные не могут жить в чистом (профильтрованном через вату), но "мертвом" воздухе, лишенном аэроионов. Это значит, что после фильтрации воздух должен подвергнуться ионизации, при которой возникают отрицательно заряженные ионы кислорода в той же концентрации, что и в воздухе морских и горных курортов. Наиболее известный и серийно выпускаемый ионизатор воздуха - "люстра Чижевского".

Вместо фильтрования воздуха для его очистки от газообразных примесей возможно применение озонирования. Озон - сильнейший природный окислитель. Он разрушает большинство летучих органических веществ, загрязняющих воздух в закрытых помещениях. К тому же, озон при концентрации около 0,1 мг/куб.м значительно уменьшает число бактерий, грибков и плесени, тем самым обеззараживая воздух. При этом в течение примерно получаса озон превращается в обычный кислород (при начальной концентрации 0,05 мг/куб.м и средней загрязненности воздуха).

Поскольку в отличие от свободной атмосферы в закрытых помещениях не идут естественные процессы образования озона, его концентрацию нужно поддерживать искусственно, с помощью озонаторов. Озонаторы - это приборы, создающие озон с помощью электрических разрядов в воздухе. Этот механизм подобен естественному процессу образования озона в результате грозовых электрических разрядов. На рынке имеются несколько типов таких устройств.

Используя озонатор в своей квартире или на рабочем месте, нужно учитывать два обстоятельства:

озон, полезный и необходимый в малых количествах, вреден для здоровья при превышении безопасной концентрации;

электромагнитные поля, создаваемые озонатором в близи прибора, так же вредны для здоровья.

Для обеспечения безопасного пользования озонатором следует соблюдать условия, содержащиеся в санитарно-гигиеническом заключении.

Прибор при работе на максимальной нагрузке используется только для санитарной обработки при отсутствии в помещении людей и домашних животных, с последующим проветриванием. Безопасность при использовании ионизатора типа лампы Чижевского обеспечивается отсутствием явления передозировки аэроионов. Однако работу таких приборов может сопровождать образование озона. Это побочный процесс. Он возникает при завышенном напряжении на игольчатых электродах, которые испускают электроны для ионизации молекул кислорода. В этом случае присутствие озона легко обнаружить при помощи обоняния. Кроме того, признаком неправильной эксплуатации прибора является заметное в темноте свечение около игольчатых электродов. Защита от электромагнитного поля ионизатора обеспечивается его удалением от мест постоянного нахождения людей. При этом прибор не должен быть доступен для людей.

Вопросы оздоровления среды обитания сегодня входят в круг важнейших для населения крупных административных и промышленных центров. Однако при всей глобальности последствий загрязнения воздуха горожане могут сами хотя бы частично решить эту проблему. Действенным способом улучшения экологической ситуации в собственном жилище станет комплекс несложных мероприятий, осуществление которых позволит заметно повысить качество воздуха в городских квартирах.

Не менее важную роль в формировании внутрижилищной среды играют и продукты жизнедеятельности человека - антропотоксины. Роль антропотоксинов в формировании воздушной среды замкнутых герметизированных систем достаточно полно освещена лишь в специальной литературе, причем установлено, что в процессе’ своей жизнедеятельности человек выделяет около 400 химических соединений.

Естественно, что в обычных условиях эксплуатации жилых и общественных зданий накопления в негерметичных помещениях антропотоксинов до уровней, способных вызвать четко выраженное токсическое действие, не происходит. Однако, даже относительно невысокие концентрации большого количества токсических веществ не безразличны для человека и способны влиять на его самочувствие, работоспособность и здоровье.

Исследования, проведенные Ю. Д. Губернским (1976-1978), показали, что воздушная среда невен-тилируемых помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Исследование воздуха помещений позволило идентифицировать в них ряд токсических веществ, которые можно распределить по классам опасности следующим образом: диметиламин, сероводород, двуокись азота, окись этилена, бензол (2-й класс опасности, высокоопасные вещества); уксусная кислота, фенол, метилстирол, толуол, метанол, винилацетат (3-й класс опасности, умеренно опасные вещества); ацетон, метилэтилкетон, бутилацетат, бутан, метилацетат (4-й класс опасности, малоопасные вещества). Пятая часть выявленных антропотоксинов относится к числу высокоопасных веществ. При этом обнаружено, что в невентилируемом помещении <http://www.ventilation-prom.ru/> диметиламин и сероводород превышали ПДК для атмосферного воздуха. Превышали ПДК или находились на их уровне и такие вещества, как двуокись и окись углерода, аммиак.

Все остальные вещества, хотя и составляли десятые и меньшие доли от ПДК, однако, вместе взятые, свидетельствовали о неблагополучии воздушной среды, поскольку даже двух - четырехчасовое пребывание в этих условиях отрицательно сказывалось на показателях умственной работоспособности исследуемых.

Газифкация жилого фонда городов и сельских населенных мест, несомненно, повышает уровень благоустройства квартир. Однако результаты многочисленных исследований гигиенистов свидетельствуют о том, что воздушная среда газифицированных жилищ при открытом сжигании газа сопровождается загрязнением воздушной среды разнообразными химическими веществами и ухудшением микроклимата квартир. Изучение воздушной среды газифицированных помещений показало, что при горении газа в воздухе помещений концентрация веществ составляла: окись углерода, в среднем - 15 мг/м3; формальдегид - 0,037 мг/м3; окись азота - 0,62 мг/м3; двуокись азота - 0,44 мг/м3; бензол - 0,07 мг/м3. Температура воздуха в помещении во время горения газа повышалась на 3-6°, влажность увеличивалась на 10-15%. Причем, высокие концентрации химических соединений наблюдались не только в кухнях, но и в жилых помещениях квартиры. После выключения газа содержание в воздухе окиси углерода и других химических веществ несколько уменьшилось, но к исходным величинам иногда не возвращалось и через 1,5-2,5 часа. Изучение действия продуктов сгорания бытового газа на дыхание человека выявило ухудшение показателей функциональных проб, связанных с нагрузкой на систему дыхания и изменение функционального состояния центральной нервной системы.

Таким образом, здания не защищают людей от загрязнений атмосферного воздуха, и, более того, все внутренние источники загрязнения в совокупности с проникающими в помещение атмосферными загрязнениями могут создать такую среду, в которой химическая нагрузка на человека токсическими соединениями и пылью может превосходить нагрузку загрязнения снаружи.

В настоящее время идентифицировано более 80 веществ, различных по своей токсичности для человека, уровню регистрируемых концентраций и частоте присутствия в воздухе закрытых помещений. На основе таких критериев, как токсичность, уровень концентрации и распространенность, определен список приоритетных веществ, выделяющихся в воздушную среду жилых и общественных зданий. Из антропотоксинов наиболее значительными являются углекислый газ, аммиак, фенол, ацетон, окись углерода, диметиламин, амины, спирты, жирные кислоты, которые регистрируются в условиях негерметичных помещений в виде следов.

Бытовые газовые плиты и недостаточная вентиляция обусловливают загрязнение воздуха окисью углерода, окислами азота, формальдегидом, бензолом. С атмосферным воздухом в помещения привносятся в основном сернистый газ, окись углерода, пыль, окислы, свинец.

Для обеспечения оптимальных условий среды, и особенно воздушной, в помещениях применяются различные системы вентиляции и кондиционирования воздуха.

В результате исследований было установлено, что система кондиционирования воздуха обеспечивает благоприятное тепловое состояние, но также выявляется нередко и определенное число -жалоб, связанных с неудовлетворительным самочувствием, ощущением «недостаточности свежего воздуха». При этом объективные исследования позволили обнаружить у многих лиц гипотонию, вегетативную дис-тонию, астенические состояния. Таким образом, приведенные данные свидетельствуют о том, что жалобы у людей при длительном пребывании их в кондиционируемых помещениях, по-видимому, не случайны.

Кроме того, оказалось, что заболеваемость гриппом, острыми катарами верхних дыхательных путей, гипертонической болезнью, воспалением легких и бронхитами у служащих, работавших в здании с кондиционированным воздухом, было выше, чем в служебных помещениях, имеющих естественное аэрирование.

Ряд авторов указывает и на опасность роста заболеваний верхних дыхательных путей. Грибки, актиномацеты, органическая пыль, скапливающиеся в воздуховодах, могут вызвать такие заболевания, как хронический бронхит, пневмония, астма, аллергические реакции, поскольку не все фильтры способны задерживать мелкодисперсные частицы, микроорганизмы.

В ряде случаев были обнаружены скопления микроорганизмов в камерах увлажнения и вентиляционных каналах, что обусловливало вспышки «болезни легионеров».

Таким образом, в силу наличия как позитивных, так и негативных моментов в оценке систем кондиционирования, представляется необходимым дальнейшее совершенствование систем и проведение совместных исследований гигиенистами и инженерами.

В последние годы все большее внимание уделяется и такому загрязнителю жилой среды, как асбест, что связано с широким применением его в строительстве. Асбест используется в качестве составной части самых различных строительных материалов (шифер и т. п.), декоративных стенных и потолочных изделий и пр. Сравнительно невысокая стоимость асбеста, возможность использовать его в виде добавок к различным традиционным строительным материалам (цемент, гипс и т. д.), простота обработки делают его весьма ценным и удобным материалом. Большое значение для широкого применения асбеста имеют его огнеупорность и возможность пропитки деревянных изделий, спецодежды, тканей и т. п.

Возрастающее хозяйственное использование асбеста приводит к проблемам гигиенического плана, связанным с широким распространением волокон асбеста в окружающей среде и воздействием их на человека при различных путях поступления в организм.

В настоящее время установлено, что асбест обладает канцерогенным свойством при ингаляционном воздействии (при вдыхании), о чем свидетельствуют эпидемиологические и экспериментальные данные. Опасность для здоровья человека вдыхания асбестовой пыли в профессиональных условиях доказана уже давно и теперь в ряде стран установлены пределы его содержания в воздухе производственных помещений. Длительное вдыхание асбеста приводит, как правило, к возникновению плевральных и бронхиальных мезотелиом или легочных карцином (бронхогенный рак). При ингаляционном хроническом воздействии на человека асбест в сравнительно больших концентрациях вызывает фиброзное заболевание легких, желудочно-кишечного тракта, мезоте-лиомы плевры и брюшины и другие опухоли. Скрытый период возникновения опухолей составляет примерно 20 лет. Исследования показали, что вдвое возрастает риск возникновения бронхиальных карцином при вдыхании асбеста и курении. Считается, что все виды асбестовых волокон вызывают асбестоз, однако наиболее опасным в канцерогенном отношении является кроцидолит.

Для США рассчитан предел содержания асбеста в атмосферном воздухе - 30 тыс. волокон/м , длина которых более 5 мкм; 10 тыс. волокон/м3 - типичная концентрация асбеста в городском воздухе ФРГ.

Становится ясной опасность загрязнения асбестом воздуха жилых помещений и общественных зданий. Проблема эта усложняется ввиду широкого распространения строительных материалов на основе асбеста в прошлом и даже настоящем. Учитывая огромное количество людей, подвергающихся такому воздействию, проблема применения асбеста приобретает особо важное значение.

Необходимо проведение целого ряда оздоровительных мероприятий в городах, в том числе градостроительного и планировочного характера.

В целом вышеуказанное свидетельствует о том, что обеспечение оптимальной воздушной среды жилых и общественных зданий является важной гигиенической и инженерно-технической проблемой. Ведущим звеном в решении этой проблемы является организация такого воздухообмена, который должен обеспечить требуемые параметры воздушной среды.

Рекомендуемые рядом авторов и норм величины воздухообмена колеблются в широких пределах: от 15 до 210 м3/ч на человека.

Качество воздушной среды, самочувствие и работоспособность исследуемых свидетельствуют о том, что для создания достаточно благоприятных условий воздушной среды в помещениях зданий необходимо подавать на одного человека не менее 60 м3 воздуха в час. Минимально необходимое количество составляет 20 м3/ч. Оптимальный уровень воздухоподачи равен 200 м3 в час на человека, что, например, требуется для операционных блоков. Вентиляция должна обеспечивать установленный нормами воздухообмен в помещениях и своевременное удаление газовых примесей, избытка тепла, влаги, скапливающихся в воздухе помещений в результате жизнедеятельности человека и осуществление различных бытовых процессов.

Минимально-необходимые расчеты кратности воздухообмена, количеств подаваемого и отводимого воздуха для помещений разного назначения приведены в нижеследующей таблице.

При этом следует учитывать, что нормы, указанные в таблице, минимальные, при их соблюдении не всегда может обеспечиваться достаточная эвакуация химических загрязнений воздуха помещений, поэтому определение необходимого объема воздухоподачи следует проводить дифференцированно для жилых и различных общественных зданий с учетом насыщенности их полимерными материалами, объема помещений, количества находящегося в них людей и времени их пребывания в данном помещении.

Внутренняя воздушная среда жилых зданий зависит как от качества окружающей среды, так и от работы ограждающих конструкций и инженерных устройств зданий. С гигиенической точки зрения важно отметить, что по сравнению с наружной средой практически все параметры внутренней среды обитания вследствие работы ото-пительно-вентиляционных систем и ограждающих конструкций претерпевают определенные изменения, причем часть изменений носит позитивный характер (создаются благоприятные микроклиматические параметры вне зависимости от наружных метеорологических условий), оказывая благоприятное воздействие на организм, а часть может носить негативный характер (если, например, будет допускаться денатурация первичного атмосферного воздуха - потеря первичных качеств, или загрязнение воздуха помещений). Наиболее выраженное и в то же время регулируемое воздействие на состояние внутренней среды помещений оказывают инженерные системы. Рассмотрим в гигиеническом аспекте степень обеспечения ими условий воздушного комфорта применительно к жилым зданиям.

Следует отметить, что жалобы человека на духоту, «нехватку кислорода» отмечаются нередко как в помещениях с недостаточным естественным воздухообменом, так и в помещениях, оснащенных разными системами вентиляции, включая системы кондиционирования воздуха. При анализе причин ощущения несвежести воздуха закрытых помещений возникает вопрос, каким должно быть воздухообеспечение, чтобы было обеспечено оптимальное самочувствие человека в помещениях.

Анализ отечественной и зарубежной литературы показывает, что хотя проблема определения критериев количественной характеристики потребности человека в качественном воздухе для закрытых помещений и была поставлена уже свыше 100 лет тому назад, однако, несмотря на большой прогресс в исследованиях процессов обмена человека с окружающей средой до сих пор отсутствуют полные объективные данные, на основании которых можно считать, что здесь не осталось нерешенных вопросов.

Такое положение, в частности, проявляется и в том, что на сегодня имеются противоречивые высказывания о пользе для человека систем кондиционирования воздуха.

Анализируя опыт применения кондиционирования воздуха в зданиях США, можно отметить, что в июле-августе, когда атмосферный воздух особенно жарок и влажен, работоспособность в кондиционируемых помещениях повышается в 2-3 раза и расходы на установку кондиционирующей аппаратуры компенсируются увеличением производительности труда.

Наблюдения административной службы по надзору за правительственными зданиями США показали, что благодаря применению кондиционирования воздуха производительность труда увеличилась на 9,5%, брак снизился на 0,9% и на 2,5% уменьшилось количество лиц, не вышедших на работу.

В настоящее время считается, что устройство кондиционирования экономически оправдывается увеличением производительности труда рабочих и обслуживающего персонала в больницах на 2,8 - 4,7%, в промышленных зданиях - на 1,5 - 1,6%, в административных зданиях - на 0,85 - 1,9%.

Однако наряду с положительными оценками систем кондиционирования воздуха имеются и отрицательные; в частности, люди жалуются на неприятные субъективные ощущения даже в тех случаях, когда воздух в помещении казалось бы соответствовал условиям комфорта.

Следует отметить, что в науке проблема обеспечения воздушного комфорта человека в закрытых помещениях, по сравнению с проблемой обеспечения теплового комфорта, изучена недостаточно: не определены все составляющие и критерии воздушного комфорта, не установлены окончательные причины воздушного дискомфорта, нередко испытываемые человеком в закрытых помещениях. В последние годы в научной литературе все чаще высказывается критическое отношение к существующим системам кондиционирования воздушной среды, так как отмечаются жалобы на недостаток свежего воздуха, быстрое наступление утомления, головные боли у работающих в учреждениях и на предприятиях с кондиционированием воздуха (Т. Д. Боченкова, Н. П. Кокорев, 1970; Л. А. Басаргина, 1970; Ф. Абель, 1974). Одной из причин воздушного дискомфорта в закрытых и, в частности, кондиционируемых помещениях ряд авторов видит изменение ионного режима в них по сравнению с исходным первичным атмосферным воздухом. Следует отметить, что имеющиеся литературные данные весьма разноречивы. Мы не ставили своей задачей анализ причин противоречий в имеющихся работах и ограничимся лишь систематизацией литературных данных по изучению воздействия разных ионных режимов в условиях пребывания в помещениях с регулируемым и нерегулируемым аэроионным составом.

Важно подчеркнуть, что если ионизация атмосферы и ее изменения при воздействии тех или иных факторов достаточно хорошо изучены, то состав аэроионов в помещениях, особенно при искусственной обработке и подаче воздуха, остается до последнего времени недостаточно изученным. Одними из первых по этой проблеме были наблюдения А. П. Соколова (1904), С. Р. Яглоу (1936), А. А. Минха (1936), которые показали, что в присутствии людей в замкнутых объемах происходит снижение содержания легких аэроионов, тем более интенсивное, чем больше в помещении людей и чем меньше его кубатора. Причиной убыли легких ионов является поглощение их в процессе дыхания, адсорбции поверхностями, а также превращение части легких ионов в тяжелые вследствие оседания на материальных частицах, взвешенных в воздухе. Был разработан электрический показатель чистоты воздуха - соотношение тяжелых и легких аэроионов.

Установлено, что возрастание количества тяжелых ионов в помещениях связано с респираторным выбросом «ядер конденсации». Причем уменьшение числа легких ионов связывают с потерей воздухом освежающих свойств, с его меньшей физиологической и химической активностью, что, по мнению ряда авторов, является причиной неблагоприятного действия загрязненного комнатного воздуха. Поэтому особый интерес представляет дезионизация и искусственная ионизация воздуха помещений, в связи с широким применением в настоящее время установок для кондиционирования воздуха, в которых он претерпевает изменения при прохождении через систему калориферов, фильтров, воздуховодов и других агрегатов.

По-видимому, дезионизация воздуха небезразлична для организма, поскольку -экспериментами Ю. Г. Нефедова и др. (1966) было установлено, что при длительном пребывании людей в герметичной камере с дезионизирован-ным воздухом у испытуемых ухудшалось самочувствие.

Исследования, проведенные в натурных условиях с кондиционированием воздуха (Р. Ф. Афанасьева, 1960), показали, что в поверхностных воздухоохладителях концентрация легких отрицательных ионов практически не снижается, после фильтров и металлических воздуховодов она уменьшается на 55%, после калориферов также падает, а после форсуночной камеры резко возрастает. Наличие рециркуляции в летнее время вызывает уменьшение числа отрицательных ионов, а в зимнее время практически не влияет на их концентрацию. Присутствие людей вызывает снижение концентрации легких ионов тем больше, чем меньше кратность воздухообмена.

В. Ф. Кириллов (1962, 1964) указывает, что дезионизированный воздух, попадая в помещение, снова ионизируется вследствие распада радиоактивных элементов, содержащихся в строительных материалах ограждений. Следовательно, восстановление уровня ионизации воздуха в помещениях исключает необходимость искусственной ионизации воздуха, прошедшего через фильтры.

Анализируя имеющиеся литературные данные, следует отметить, что ионизация воздуха зданий как технико-гигиеническая проблема на сегодня не может быть признана окончательно решенной. В целом, современной наукой, несомненно установлено, что ионизация воздуха имеет важное медико-гигиеническое значение. Вместе с тем применительно к вопросам санитарной техники, в частности, вентиляции и кондиционирования воздуха, в технической литературе обычно встречаются весьма упрощенное изложение этой весьма важной проблемы. Нередко указывается, что традиционные средства кондиционирования микроклимата, используемые при строительстве жилых, общественных и производственных зданий, совершенно не в состоянии решить задачу «оживления» воздуха - насыщения его легкими отрицательными ионами, поскольку атмосферный воздух полностью теряет легкие ионы после обработки и транспортировки приточного воздуха и поступления его в помещения, что приводит к весьма неблагоприятному воздействию на организм.

При этом исходят из предпосылки о том, что воздух, не содержащий легкие ионы, губителен для всего живого, и, напротив, в отличие от легких ионов, тяжелые ионы весьма токсичны. Более того, утверждается, что лишь легкие отрицательные ионы полезны для человека, легкие же положительные ионы оказывают только вредное воздействие. При этом декларируется, что в закрытом помещении быстро наступает денатурация воздушной среды в отношении легких ионов, в результате чего воздух помещений становится, как считают, деионизированным и опасным для процессов жизнедеятельности. В то же время установка в помещениях простейших ионизаторов воздуха будто бы полностью решает эту проблему. Это представление было, в основном, почерпнуто из неправильно понятых отдельных публикаций. В частности, в работах А. Л. Чижевского (1960) лабораторные животные, помещенные в камеру с деионизированным воздухом, через 2-3 недели заболевали и затем погибали. Исходя из этого в научно-популярной литературе затем и был сделан вывод, что без ионов организм получает в помещениях «неполноценный» кислород, который и вызывает заболевания. Однако все попытки воспроизвести эти опыты окончились неудачно, так как пребывание в камерах, снабженных деиони-зированным воздухом, не приводило к гибели животных, как это указывалось выше.

Наши собственные исследования и разработки в области ионизации воздуха позволяют утверждать, что эта проблема не так проста, как это излагается в научно-популярных и даже научно-технических журналах (Ю. Д. Губернский, 1969-1985).

Так, в частности, нами изучена ионизация воздуха в современных высотных административных зданиях, оснащенных системой кондиционирования воздуха. Первое, что следует выделить при рассмотрении полученных данных - концентрация легких отрицательных ионов в помещении не только не уменьшилась, по сравнению с наружным атмосферным воздухом, но и возросла в 2,53 раза. Концентрация легких положительных ионов в помещении осталась на прежнем уровне по сравнению с атмосферным воздухом. Важно подчеркнуть, что это наблюдается не только для зданий с системами кондиционирования воздуха, но характерно и для жилых и общественных зданий, не оснащенных принудительной вентиляцией. Объясняется это тем, что в зданиях интенсивность ионизации воздуха, благодаря остаточной радиоактивности строительных материалов, существенно выше, чем в атмосферном воздухе. Благодаря этому и стационарные концентрации ионов в помещениях нередко выше.

Специалисты, пропагандирующие искусственную отрицательную ионизацию, важное значение придают коэффициенту униполярности ионов (отношению концентраций положительных и отрицательных ионов). При этом считается, что оздоровительное действие ионов наблюдается лишь при коэффициентах униполярности, значительно меньших единицы. Между тем, в природных условиях в чистых местностях в атмосферном воздухе концентрации положительных ионов обычно всегда выше концентраций отрицательных ионов. Объясняется это тем, что при действии ионизирующих излучений одновременно образуются как положительные ионы, так и свободные электроны. Подвижность электронов в воздухе достигает 500 см2/(В-с), в то время как у легких положительных ионов она составляет 1-2 см2/(В-с). Благодаря этому электроны быстрее нейтрализуются на различных поверхностях, что и приводит к повышению коэффициента униполярности. Таким образом, преобладание в природных условиях положительных ионов над отрицательными не подтверждает точку зрения, что лишь отрицательные ионы имеют важное биологические значение, а положительные - вредны для организма.

По нашим данным, коэффициент униполярности в атмосферном воздухе составлял 4,1. Фильтрация воздуха и прохождение его через камеру орошения не повышали, а снижали коэффициент униполярности. Транспортировка воздуха по воздуховодам снижала концентрацию ионов и повышала коэффициент униполярности. Тем не менее, в конечном счете, в помещении коэффициент униполярности оказался ниже, чем в атмосферном воздухе - 1,9, т. е. упал в два раза. Интересно, что присутствие людей в кондиционируемом помещении практически не приводит к резкому снижению концентраций легких ионов.

В современной литературе отсутствуют сколько-нибудь надежные данные о биологическом действии средних ионов. Между тем обнаружено их значительное количество как в атмосферном воздухе, так и в помещениях. Различные виды обработки воздуха в меньшей степени влияют на концентрации средних ионов, чем легких. В сумме концентраций легких и средних ионов доля средних составляет 94-96%. Концентрации средних ионов в помещениях также несущественно изменились, по сравнению с атмосферным воздухом. Коэффициент унипо-лярности по средним ионам в помещениях также практически не изменился. Примерно те же соотношения наблюдаются и для суммы легких и средних ионов. Отрицательных ионов в помещениях стало несколько больше, чем в атмосферном воздухе, положительных - несколько меньше. Коэффициент уни-полярности - несколько снизился. Таким образом, категорически говорить о «губительном» влиянии инженерного оборудования зданий на количественные характеристики ионного режима закрытых помещений нет оснований, хотя при пребывании человека в условиях закрытых помещений ряд природных факторов окружающей среды в определенной степени трансформируется и воздействует не в нативном, а уже в измененном состоянии. Причем, как нами было установлено, в наибольшей мере изменяются нативные качества первичного атмосферного воздуха в отношении ионно-озонного комплекса.

Причина возникновения воздушного дискомфорта в помещениях является многофакторной и зависит как от качества, так и от количества подаваемого в здание воздуха. При этом изменение нативных свойств первичного атмосферного воздуха в процессе обработки и транспортировки и загрязнение экзо- и эндогенными токсическими веществами являются определяющими моментами, так как вся медико-биологическая практика свидетельствует, что любое насильственное выключение природных факторов, к которым человек адаптировался в процессе своей эволюции (ионы и озон), и включение посторонних ингредиентов (атмосферные загрязнения, продукты деструкции полимерных и отделочных материалов) отрицательно сказываются на самочувствии и состоянии здоровья.

Установлено, что присутствие легких ионов в воздухе является необходимым и вместе с тем может рассматриваться как показатель его чистоты, причем естественная ионизация атмосферного воздуха с преобладанием легких отрицательных ионов наиболее высока в лесах, на курортах и морских побережьях. В этих же местах обнаруживаются и наиболее высокие для приземного слоя концентрации атмосферного озона. Например, в воздухе курорта Сочи концентрация озона меняется в пределах от 11 до 72 мкг/м3; максимальное содержание озона в воздухе хвойного леса достигает 84 - 100 мкг/м3.

В то же время озон играет определенную роль в новом типе загрязнения атмосферного воздуха продуктами фотохимических реакций, участвуя в сложном комплексе окисления органических веществ при загрязнении атмосферы последними.

К настоящему времени изучены токсикологические свойства озона в больших концентрациях, вызывающие раздражение слизистых оболочек, поражение легочной ткани, местное разрушение белков с образованием продуктов, воздействующих на центральную нервную систему и внутренние органы, повышение щелочности мочи, уменьшение выделения некоторых аминокислот, снижение веса тела. Озон в концентрациях 200-600 мкг/м3 вызывает начальные нарушения условно-рефлекторной деятельности у подопытных животных, а при 800-1000 мкг/м3 обусловливает уже резкие нарушения в центральной нервной системе; смертельная доза озона для мышей равна 69000-80000 мкг/м3, а для крыс - 45000-50000 мкг/м3. Токсикологическими экспериментами установлено, что ПДК для озона в воздухе производственных помещений равна 100 мкг/м3. Таким образом, биологическое действие озона в концентрациях более 100 мкг/м3 изучено достаточно полно и определены его токсические свойства в повышенных концентрациях, которые в основном имеют место в производственных условиях или при образовании фотохимического смога.

Биологическое же действие озона в концентрациях ниже 100 мкг/м3, т. е. в тех концентрациях, которые характерны для чистого атмосферного воздуха, изучено недостаточно, а имеющиеся отдельные сведения носят противоречивый характер.

Исследование особенностей воздействия на организм озона в природных концентрациях является серьезной гигиенической задачей, решение которой будет способствовать обоснованию гигиенических требований к управлению воздушной средой закрытых помещений, которые сейчас ограничиваются в основном температурно-влажност-ными и радиационными параметрами. Решение проблемы полного, а не частичного кондиционирования воздуха закрытых помещений требует, таким образом, проведения экспериментальных исследований, посвященных регламентации не только ионного, но и озонного режима закрытых помещений жилых и общественных зданий, вопросам искусственной ионизации и озонирования воздуха закрытых помещений.

Следует отметить, что воздух закрытых помещений в условиях крупного современного города содержит загрязненный атмосферный воздух, продукты деструкции полимерных материалов, применяемых в строительстве и для отделки мебели, продукты жизнедеятельности организма человека. Суммарная химическая нагрузка на человека в разных помещениях жилых и общественных зданий различна, поэтому определенный интерес представляет изучение влияния озона на организм как в условиях чистого воздуха, так и на фоне присутствия в воздухе помещений различных химических примесей, накапливающихся в результате жизнедеятельности организма при неэффективной их эвакуации.

Нашими исследованиями было установлено, что комплексное воздействие искусственно ионизированного и озонированного воздуха (на уровне природных концентраций) повышает выносливость экспериментальных животных к физической нагрузке, а также иммунный потенциал организма. Однако данный позитивный эффект проявляется только при условии, что химический состав воздуха закрытых помещений отвечает гигиеническим требованиям (Ю. Д. Губернский, 1978).

Нами было изучено влияние искусственной ионизации на самочувствие служащих в административных зданиях. Как «комфортную» при искусственной ионизации среду оценили 59,4% служащих, а в комнатах без такой ионизации подобную оценку дали 42% служащих. Существенным обстоятельством здесь является тот факт, что столь положительный эффект от ионизации воздуха проявлялся лишь в условиях теплового комфорта (при температуре воздуха в зоне 20-22°) и становится маловыраженным или полностью отсутствовал при температуре менее 19° или более 23°. Кроме того, при искусственной ионизации с помощью комнатных аэроионизаторов служащие иногда продолжали испытывать желание открыть окна, отмечали повышенную электризацию предметов при работе аэроионизаторов.

Большой интерес представляют данные о влиянии химической природы носителя заряда на эффект биологического воздействия ионов. Для определения ионного состава ионы осаждались на заряженную металлическую проволоку, которая затем в виде спирали помещалась в ионный источник масс - спектрометра. Регистрация масс - спектров при нагревании спирали позволяет определять состав ионов. Трансформация ионов происходит и при кондиционировании воздуха.

В атмосферном воздухе основными легкими отрицательными ионами являются ионы озона О3 основными положительными ионами - ионы окиси азота NO+. После камеры орошения содержание первичных ионов Оз~ снизилось в 71 раз, ионов N0+ - в 6,3 раза. Основной вклад в содержание легких ионов в кондиционируемом помещении вносят ионы паров воды - НгО ~и НгО+. В жилых помещениях содержание ионов Озснижается в 10-30 раз, ионов NO+ - в 3-5 раз. В подземных помещениях с ограниченной вентиляцией содержание легких ионов обычно повышается (за счет повышения естественной радиоактивности воздуха), но концентрация ионов Оз Снижается в 200-500 раз, ионов NO+ - в 10-20 раз.

Приведенные данные подтверждают определенную противоречивость технико-гигиенической проблемы ионизации воздуха. Это различие в оценке ионизации и отражается в современной литературе. Следует подчеркнуть, что в техническом отношении внедрение ионизации не представляет каких-либо трудностей. В таком случае возникает вопрос, почему же до сих пор оно не сделано, применительно, по крайней мере, к административным и производственным зданиям, ни за рубежом, ни в нашей стране в широком масштабе.

Причина, возможно, кроется в известной ограниченности подхода к данной проблеме, когда изучается в основном только одна ионизация воздуха. Однако, как представляется, следует также помнить о том, что помимо ионов стимулирующим действием обладают и другие микропримеси воздушной среды - озон, фитонциды, различные химические вещества в оптимальных концентрациях (Ю. Д. Губернский, М. Т. Дмитриев, 1979). Поэтому научно обоснованной рекомендации по искусственной ионизации воздуха не могут носить универсального характера, а должны быть всегда конкретными и комплексными. Так, искусственная ионизация в 50-100 раз повышает степень инкорпорации пыли во вдыхаемом воздухе, что значительно увеличивает токсичность взвешенных веществ. Следовательно, для запыленного воздуха более эффективны другие способы оздоровления воздушной среды, а не принудительная ионизация воздуха, которая в данных условиях дает только негативный эффект.

Позитивный эффект от искусственной ионизации воздуха может иметь место также только при условии, если воздух является чистым и в химическом отношении. В противном случае, искусственная ионизация не только не дает никакого позитивного эффекта, но может причинить даже вред.

Принципиально неверным представляется также утверждение, что только отрицательные легкие ионы обладают позитивным действием, а положительные легкие ионы - лишь токсическим. Если бы это было так, то природный воздух, в котором положительных ионов обычно больше, должен быть практически всегда токсичным. В то же время, согласно серьезным экспериментальным исследованиям, неоднократно отмечались нормирующее влияние и терапевтический эффект легких ионов как отрицательных, так и положительных. Выше отмечалось, что в ряде работ обнаружено благоприятное действие именно положительных и неблагоприятное - отрицательных ионов. Во многих случаях именно положительные ионы повышали устойчивость организма к действию токсических факторов или химических веществ, а отрицательные ионы ее снижали. Очевидно, правильнее говорить о стимулирующем действии биполярной ионизации, характерной как для атмосферного, так и комнатного воздуха.

Практическую значимость имеет тот факт, что многие характеристики ионизации воздуха, включая ионные показатели загрязнения (отношения концентраций средних, тяжелых и ультратяжелых ионов к легким), коэффициенты униполярности и рекомбинации ионов могут широко использоваться для оценки качества воздушной среды, создание эффективных способов его очистки и обработки, контроля за его загрязнением. Общее количество характеристик ионизации воздуха, не считая состава ионов, составляет 28, причем измерение заряженных частиц удобно для использования современных радиоэлектронных устройств и компьютерной техники.

ЛИТЕРАТУРА

Гигиена и санитария. 1990-1997.

Кароль Н.Л., Розанов В.В., Тимофеев Ю.М. Газовые примеси в атмосфере. Л.: Гидрометеоиздат, 1983. 192 с.

ДмитриевМ.Т., КазнинаН.И. Санитарно-химический анализ загрязняющих веществ в окружающей среде. М.: Химия, 1989. 368 с.

Витенберг А.Т, Иоффе Б.В. Газовая экстракция в хромато-графическом анализе. Л.: Химия, 1982. 279 с.D.J. // Biosensors for Direct Monitoring of Enviro-mental Pollutants in Field / Ed. D.P. Nikolelis, U. Krull. Dordrecht: Kluwer Acad. Publ., 1998. Vol. 68. Р. 1-15. (NATO ASI Ser.).

Похожие работы на - Эколого-химические и аналитические проблемы закрытых помещений

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!