Методы контроля сварных соединений

  • Вид работы:
    Контрольная работа
  • Предмет:
    Другое
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    404,55 kb
  • Опубликовано:
    2011-09-25
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Методы контроля сварных соединений

Содержание

Введение

.Дефекты и контроль качества сварных соединений. Общие сведения и организация контроля

. Разрушающие методы контроля сварных соединений

. Механические испытания на твердость

. Методы Виккерса и Роквелла

Заключение

Список использованной литературы

Введение

В своей работе я раскрываю вопрос о методах контроля. В зависимости от вида сварных соединений и условий дальнейшей эксплуатации, изделия после сварки подвергают соответствующему контролю. Сварные соединения подвергают проверке для определения возможных отклонений от технических условий, предъявляемых данному виду изделий. Изделие считается качественным, если отклонения не превышают допустимые нормы.

Контроль сварных соединений может быть предварительным, когда проверяют качество исходных материалов, подготовку свариваемых поверхностей, состояние оснастки и оборудования. К предварительному контролю относят также сварку опытных образцов, которые подвергают соответствующим испытаниям. При этом в зависимости от условий эксплуатации опытные образы подвергают металлографическим исследованиям и неразрушающим или разрушающим методам контроля.

Под текущим контролем понимают проверку соблюдения технологических режимов, стабильность режимов сварки. При текущем контроле проверяют качество наложения послойных швов и их зачистку. Окончательный контроль осуществляют в соответствии с техническими условиями. Дефекты, обнаруженные в результате контроля, подлежат исправлению.

Механические испытания обычно проводят для выяснения поведения материала в определенном напряженном состоянии. Такие испытания дают важную информацию о прочности и пластичности металла. В дополнение к стандартным видам испытаний может применяться специально разработанное оборудование, воспроизводящее те или иные специфические условия эксплуатации изделия. Механические испытания классифицируются по разным принципам. Наиболее распространена классификация по характеру изменения нагрузки во времени. По этому принципу разделяют испытания на: статические <#"512423.files/image001.gif">

Рис. 1. Виды дефектов сварных швов:

а - ослабление шва. б - неравномерность ширины, в - наплыв, г - подрез, с - непровар, с - трещины и поры, ж - внутренние трещины и поры, з - внутренний непровар, и - шлаковые включения

Дефекты формы и размеров швов косвенно указывают на возможность образования внутренних дефектов в шве.

Подрезы представляют собой продолговатые углубления (канавки), образовавшиеся в основном металле вдоль края шва. Они возникают в результате большого сварочного тока и длинной дуги. Основной причиной подрезов при выполнении угловых швов является смещение электрода в сторону вертикальной стенки. Это вызывает значительный разогрев металла вертикальной стенки и его стекание при оплавлении на горизонтальную стенку. Подрезы приводят к ослаблению сечения сварного соединения и концентрации в нем напряжений, что может явиться причиной разрушения.

Прожоги - это сквозные отверстия в шве, образованные в результате вытекания части металла ванны. Причинами их образования могут быть большой зазор между свариваемыми кромками, недостаточное притупление кромок, чрезмерный сварочный ток, недостаточная скорость сварки.

Непроваром называют местное несплавление кромок основного металла или несплавление между собой отдельных валиков при многослойной сварке. Причины образования непроваров - плохая зачистка металла от окалины, ржавчины и загрязнений, малый зазор при сборке.

Трещины, также как и непровары, являются наиболее опасными дефектами сварных швов.

Шлаковые включения , представляющие собой вкрапления шлака в шве, образуются в результате плохой зачистки кромок деталей и поверхности сварочной проволоки от оксидов и загрязнений.

Газовые поры появляются в сварных швах при недостаточной полноте удаления газов при кристаллизации металла шва.

Контроль керосином основан на физическом явлении капиллярности, которое заключается в способности керосина подниматься по капиллярным ходам - сквозным порам и трещинам.

Благодаря высокой проникающей способности керосина обнаруживаются дефекты с поперечным размером 0,1 мм и менее.

Контроль аммиаком основан на изменении окраски некоторых индикаторов (раствор фенолфталеина, азотнокислой ртути) под воздействием щелочей. В качестве контролирующего реагента применяется газ аммиак. При испытании на одну сторону шва укладывают бумажную ленту, смоченную 5%-ным раствором индикатора, а с другой стороны шов обрабатывают смесью аммиака с воздухом. Аммиак, проникая через неплотности сварного шва, окрашивает индикатор в местах залегания дефектов.

Контроль воздушным давлением (сжатым воздухом или другими газами) подвергают сосуды и трубопроводы, работающие под давлением, а также резервуары, цистерны и т.п.

Контроль гидравлическим давлением применяют при проверке прочности и плотности различных сосудов, котлов, паро-, водо- и газопроводов и других сварных конструкций, работающих под избыточным давлением.

Вакуумному контролю подвергают сварные швы, которые невозможно испытать керосином, воздухом или водой и доступ к которым возможен только с одной стороны.

Его широко применяют при проверке сварных швов днищ резервуаров, газгольдеров и других листовых конструкций. Сущность метода заключается в создании вакуума на одной стороне контролируемого участка сварного шва и регистрации на этой же стороне шва проникновения воздуха через имеющиеся неплотности. Контроль ведется с помощью переносной вакуум-камеры, которую устанавливают на наиболее доступную сторону сварного соединения , предварительно смоченную мыльным раствором (рис. 2).

Рис. 2. Вакуумный контроль шва:

- вакуумметр, 2 - резиновое уплотнение, 3 - мыльный раствор, 4 - камера.

Люминесцентный контроль и контроль методом красок, называемый также капиллярной дефектоскопией, проводят с помощью специальных жидкостей, которые наносят на контролируемую поверхность изделия.

Контроль методом красок заключается в том, что на очищенную поверхность сварного соединения наносится смачивающая жидкость, которая под действием капиллярных сил проникает в полость дефектов.

Контроль газоэлектрическими течеискателям и применяют для испытания ответственных сварных конструкций, так как такие течеискатели достаточно сложны и дорогостоящи. В качестве газа-индикатора в них используется гелий.

Для обнаружения скрытых внутренних дефектов применяют следующие методы контроля.

Магнитные методы контроля основаны на обнаружении полей магнитного рассеяния, образующихся в местах дефектов при намагничивании контролируемых изделий. Изделие намагничивают, замыкая им сердечник электромагнита или помещая внутрь соленоида.

Требуемый магнитный поток можно создать и пропусканием тока по виткам (3 - 6 витков) сварочного провода, наматываемого на контролируемую деталь. В зависимости от способа обнаружения потоков рассеяния различают следующие методы магнитного контроля: метод магнитного порошка, индукционный и магнитографический. Дефекты обнаруживают с помощью искателя, в катушке которого под воздействием поля рассеяния индуцируется ЭДС, вызывающая оптический или звуковой сигнал на индикаторе. При магнитографическом методе (рис. 3) поле рассеяния фиксируется на эластичной магнитной ленте, плотно прижатой к поверхности соединения. Запись воспроизводится на магнитографическом дефектоскопе. В результате сравнения контролируемого соединения с эталоном делается вывод о качестве соединения.

Рис. 3. Магнитная запись дефектов на ленту: 1 - подвижный электромагнит, 2 - дефект шва, 3 - магнитная лента.

Радиационные методы контроля являются надежным и широко распространенными методами контроля, основанными на способности рентгеновского и гамма-излучения проникать через металл.

Выявление дефектов при радиационных методах основано на разном поглощении рентгеновского или гамма-излучения участками металла с дефектами и без них. Сварные соединения просвечивают специальными аппаратами. С одной стороны шва на некотором расстоянии от него помещают источник излучения, с противоположной стороны плотно прижимают кассету с чувствительной фотопленкой (рис. 4).

Рис. 4. Схема радиационного просвечивания швов: а - рентгеновское, б - гамма-излучением: 1 - источник излучения, 2 - изделие, 3 - чувствительная пленка

Рентгенопросвечиванием целесообразно выявлять дефекты в деталях толщиной до 60 мм. Наряду с рентгено - графированием (экспозицией на пленку) применяют и рентгеноскопию, т.е. получение сигнала о дефектах при просвечивании металла на экран с флуоресцирующим покрытием.

Имеющиеся дефекты в этом случае рассматривают на экране. Такой способ можно сочетать с телевизионными устройствами и контроль вести на расстоянии.

Ультразвуковой контроль основан на способности ультразвуковых волн проникать в металл на большую глубину и отражаться от находящихся в нем дефектных участков. В процессе контроля пучок ультразвуковых колебаний от вибрирующей пластинки-щупа (пьезокристалла) вводится в контролируемый шов.

При встрече с дефектным участком ультразвуковая волна отражается от него и улавливается другой пластинкой-щупом, которая преобразует ультразвуковые колебания в электрический сигнал (рис. 5).

Рис. 5. Ультразвуковой контроль швов: 1 - генератор УЗК, 2 - щуп, 3 - усилитель, 4 - экран.

Ультразвуковой контроль имеет следующие преимущества: высокая чувствительность (1-2%), позволяющая обнаруживать, измерять и определять местонахождение дефектов площадью 1-2 мм2; большая проникающая способность ультразвуковых волн, позволяющая контролировать детали большой толщины; возможность контроля сварных соединений с односторонним подходом; высокая производительность и отсутствие громоздкого оборудования. Существенным недостатком ультразвукового контроля является сложность установления вида дефекта. Этот метод применяют и как основной вид контроля, и как предварительный с последующим просвечиванием сварных соединений рентгеновским или гамма-излучением.

 

2.Разрушающие методы контроля сварных соединений

К разрушающим методам контроля относятся способы испытания контрольных образцов с целью получения необходимых характеристик сварного соединения. Эти методы могут применяться как на контрольных образцах, так и на отрезках, вырезанных из самого соединения. В результате разрушающих методов контроля проверяют правильность подобранных материалов, выбранных режимов и технологий, осуществляют оценку квалификации сварщика.

Механические испытания являются одним из основных методов разрушающего контроля. По их данным можно судить о соответствии основного материала и сварного соединения техническим условиям и другим нормативам, предусмотренным в данной отрасли.

К механическим испытаниям относят:

а) испытание сварного соединения в целом на различных его участках (наплавленного металла, основного металла, зоны термического влияния) на статическое (кратковременное) растяжение; б) статический изгиб; в) ударный изгиб (на надрезанных образцах); г) на стойкость против механического старения; д) измерение твердости металла на различных участках сварного соединения.

Контрольные образцы для механических испытаний варят из того же металла, тем же методом и тем же сварщиком, что и основное изделие. В исключительных случаях контрольные образцы вырезают непосредственно из контролируемого изделия. Варианты образцов для определения механических свойств сварного соединения.

Статическим растяжением испытывают прочность сварных соединений, предел текучести, относительное удлинение и относительное сужение. Статический изгиб проводят для определения пластичности соединения по величине угла изгиба до образования первой трещины в растянутой зоне.

Испытания на статический изгиб проводят на образцах с продольными и поперечными швами со снятым усилением шва заподлицо с основным металлом.

Ударный изгиб - испытание, определяющее ударную вязкость сварного соединения. По результатам определения твердости можно судить о прочностных характеристиках, структурных изменениях металла и об устойчивости сварных швов против хрупкого разрушения. В зависимости от технических условий изделие может подвергаться ударному разрыву. Для труб малого диаметра с продольными и поперечными швами проводят испытания на сплющивание. Мерой пластичности служит величина просвета между поджимаемыми поверхностями при появлении первой трещины.

Металлографические исследования сварных соединений проводят для установления структуры металла, качества сварного соединения, выявляют наличие и характер дефектов. По виду излома устанавливают характер разрушения образцов, изучают макро- и микроструктуру сварного шва и зоны термического влияния, судят о строении металла и его пластичности.

Макроструктурный анализ определяет расположение видимых дефектов и их характер, а также макрошлифы и изломы металла. Его проводят невооруженным глазом или под лупой с 20-ти кратным увеличением.

Микроструктурный анализ проводится с увеличением в 50-2000 раз с помощью специальных микроскопов. При этом методе можно обнаружить окислы на границах зерен, пережог металла, частицы неметаллических включений, величину зерен металла и другие изменения в его структуре, вызванные термической обработкой. При необходимости делают химический и спектральный анализ сварных соединений.

Специальные испытания выполняют для ответственных конструкций. Они учитывают условия эксплуатации и проводятся по методикам, разработанным для данного вида изделий.

. Механические испытания на твердость

Отбор образцов

Контрольные образцы для механических испытаний, в соответствии с требованиями ГОСТ6996-66* изготовляют из пластин (проб), сваренных специально из того же металла и по той же технологии, что и сварные соединения металлоконструкций и трубопроводов или вырезают непосредственно из них.

Не допускается применение материалов, на которые отсутствуют сертификаты, паспорта и другие документы, подтверждающие их качество.

Для контрольных соединений, выполняемых дуговой, электрошлаковой и газовой сваркой из плоских элементов, по требованию ГОСТ6996-66* ширину каждой пластины (если нет иных указаний в нормативно-технической и проектной документации) следует принимать в зависимости от толщины металла:

При выполнении контрольного соединения из круглого или фасонного проката ширина его должна быть не менее двух диаметров или ширин элемента.

Длина свариваемых пластин определяется размерами и количеством образцов, подлежащих изготовлению с учетом припусков на ширину реза и последующую обработку с добавлением длины неиспользуемых участков. Размеры неиспользуемых участков приведены в табл. 28 <http://snipov.net/c_4646_snip_100577.html>.

Вырезка контрольных образцов из пластин должна производиться на металлорежущих станках. Допускается применение термической резки образцов с последующим удалением механическим способом металла, подвергаемого термическому воздействию.

Расположение образца по отношению к направлению проката оговаривается стандартами или проектно-технологической документацией на сварку.

Таблица 28

Способ сварки

Размер неиспользуемого участка, не менее, мм


в начале шва

в конце шва

Ручная дуговая сварка покрытыми электродами и газовая сварка

20

30

Механизированная сварка с любым типом защиты, кроме флюса, при толщине металла, мм:

 

 

до 10

15

30

св.10

30

50

Автоматизированная и механизированная дуговая сварка под флюсом на токе до 1000 А, электрошлаковая сварка, дуговая сварка с принудительным формированием

40

70

Автоматизированная сварка под флюсом на токе более 1000 А

60

Длина кратера


К разрушающим методам контроля относят механические испытания, металлографию, коррозионные испытания, технологические пробы на свариваемость и др. РК обычно дает возможность получить количественные характеристики качества соединения (например, прочность соединения на растяжение) и точно определить вид (природу) дефекта.

Недостатком РК является то, что испытания проводятся на образцах-свидетелях, моделях, реже на готовых изделиях, но не на тех объектах, которые в дальнейшем применяются в эксплуатации. Для обеспечения достоверности испытаний количество образцов должно быть достаточно большим. При этом расходуется большое количество материалов, изготовление образцов требует трудоемкой механической обработки.

НРК осуществляется на изделиях, предназначенных к эксплуатации. При этом оцениваются лишь свойства, косвенно характеризующие качество сварного соединения, например наличие неоднородностей в сварном шве. Для установления связи между результатами НРК и эксплуатационной надежностью изделия и для точного определения вида дефекта требуются дополнительные исследования. Достоинства НРК: испытания проводятся на самих изделиях и на опасных участках, можно контролировать любое изделие из партии, даже все, если это нужно, можно проводить контроль во время эксплуатации изделия без прекращения его работы, в том числе неоднократно. По сравнению с РК экономятся материалы и затраты труда на подготовку и проведение испытаний.

Методы НРК подразделяются на следующие виды: акустические, вихретоковые, магнитные, оптические проникающими веществами (капиллярные и течеисканием), радиационные, радиоволновые, тепловые, электрические. При контроле сварных соединений чаще применяются четыре метода: радиационные, акустические, магнитные и испытания проникающими веществами.

К неразрушающим методам близки так называемые безобразцовые испытания, сопровождающиеся небольшими нарушениями целостности материала, но не изделия в целом (например, измерение твердости), внешний осмотр, а также контроль параметров процесса сварки.

. Методы Виккерса и Роквелла

Метод Виккерса- используется для испытания твердости деталей малой толщины или тонких поверхностных слоев, имеющих высокую твердость. Твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади отпечатка (причём площадь отпечатка берётся как площадь части поверхности пирамиды, а не как площадь ромба); размерность едиництвёрдости по Виккерсу кг-с/мм². Твёрдость, определённая по этому методу, обозначается HV;

При измерении твердости по методу Виккерса в качестве индентора применяется алмазный наконечник в форме правильной четырехугольной призмы.

При измерении твердости по ГОСТ 2999-75* к алмазной пирамиде прикладывают нагрузки, регламентируемые п. 3, 5 указанного стандарта.

Для определения твердости по методу Виккерса берут среднее арифметическое значение длин двух диагоналей. Разность длин диагоналей одного отпечатка не должна превышать 2 %. Число твердости определяется по табл. 1-5 прил. 1 ГОСТ 2999-75 или по формуле

контроль сварное соединение твердость

НV = 2Р sin(a/2)/d2 = 1,854 Р/d2

где P - нагрузка, H (кгс); a - угол между противоположными гранями пирамиды при вершине, равной 136°; d - среднее арифметическое значение длин обеих диагоналей, мм.

Согласно ГОСТ 6996-66*, измерение твердости проводят не менее чем в пяти точках для каждого участка сварного соединения. По требованию технической и проектной документации допускается другое количество точек измерения твердости для каждого участка сварного соединения.

Среднюю твердость металла каждого участка сварного соединения, в соответствии с ГОСТ 6996-66* определяют как среднее арифметическое результатов отдельных измерений, полученных при испытании твердости данного участка.

Отклонение результатов измерения твердости от нормируемого допускается только в, случае специального указания нормативной технической и проектной документации. При неудовлетворительных результатах, согласно ГОСТ 6996-66*, испытания повторяют на удвоенном количестве образцов.

Метод Роквелла- твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Испытание шариком применяют при определении твердости мягких материалов, а алмазным конусом - при испытании твердых материалов. Твёрдость по Роквеллу - число отвлеченное и обозначается в зависимости от условий испытания HR, HRB, HRC и HRA; Определение твердости по Роквеллу имеет широкое применение, т. к. дает возможность испытывать твердые и мягкие материалы; при этом отпечатки от конуса или шарика настолько малы, что это позволяет испытывать готовые детали без их порчи; испытание не требует никаких измерений - число твердости читается прямо на шкале.

Определение твердости. Твердость чаще всего измеряют методами Роквелла и Бринелля, при которых мерой твердости служит глубина вдавливания "индентора" (наконечника) определенной формы под действием известной нагрузки. На склероскопе Шора твердость определяется по отскоку бойка с алмазным наконечником, падающего с определенной высоты на поверхность образца. Твердость - очень хороший показатель физического состояния металла. По твердости данного металла зачастую можно с уверенностью судить о его внутренней структуре. Испытания на твердость часто берут на вооружение отделы технического контроля на производствах.

Заключение

Основная задача любой системы контроля - выявление дефектов и определение пределов прочности и надежности. Дефекты могут возникнуть в результате ошибки при конструировании, производстве или эксплуатации: дефекты литья, усталостное разрушение, атмосферная коррозия, изнашивание сопряженных деталей, дефекты при нанесении покрытий, дефекты неразъемных соединений металла и так далее. В каждом конкретном случае применяются специальные методики, позволяющие определить степень влияния дефекта на качество изделия: насколько уменьшится надежность, рабочие характеристики, как изменятся сроки и условия эксплуатации, или дефект является критичным и предмет не может быть допущен к использованию. Различают две основные группы испытаний: разрушающего и неразрушающего контроля.

Разрушающий контроль служит для количественного определения максимальной нагрузки на предмет, после которой наступает разрушение. Испытания могут носить разный характер: статические нагрузки позволяют точно измерить силу воздействия на образец и подробно описать процесс деформации.

Испытания на твердость служат для измерения силы, с которой более твердое тело (например, алмазный наконечник ударника) внедряется в поверхность образца. Сегодня не существует одного универсального метода, который позволял бы измерить все свойства металлического изделия разом. Поэтому методы контроля качества применяются в комплексе: на стадиях разработки и изготовления - разрушающие, в процессе эксплуатации - различные неразрушающие. Выбор конкретного способа контроля зависит не только от специфики и назначения металлической конструкции, но и от многочисленных внешних факторов, которые непременно учитываются специалистами.

Список использованной литературы

1. В.В. Лоскутов Шлифовальные станки 2005 (М. Машиностроение 2003).

. В.В. Лоскутов Шлифование металлов: Учебник 2007 (М. Машиностроение 2003).

. Б.А. Кузьмина «Технология металлов и конструкционные материалы», Москва, «Машиностроение» 2006

. Ю.М. Лахтин «Основы металловедения», Москва, «Металлургия» 2009

. Ю.А. Геллер, А.Г. Рахштадт Материаловедение. Методы анализа, лабораторные работы и задачи. М.: Металлургия, 2009г.

. А.Г. Рахштадт М.: Металловедение и термическая обработка стали: Справ. М.Л Бернштейн, Металлургия, 2009г.


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!