Методы безусловной многомерной оптимизации

  • Вид работы:
    Контрольная работа
  • Предмет:
    Экономика отраслей
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    278,13 kb
  • Опубликовано:
    2009-12-18
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Методы безусловной многомерной оптимизации

Федеральное агентство по образованию

Новокузнецкий филиал-институт

ГОУ ВПО «Кемеровский государственный университет»

Кафедра информационных систем и управления им. В.К. Буторина






КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Теория управления»

Методы безусловной многомерной оптимизации

(Вариант 20)

Выполнили: студенты IV курса

группы ПИЭ - 061

Тимохова А.В.

Годун И.А.

Руководитель: ассистент

кафедры ИСУ

Щепетов

Алексей

Викторович


Новокузнецк 2009

1 Задача об оптимальном распределении инвестиций

Задача: Распределить Т = 100 ден.ед. по четырем предприятиям с целью получения максимальной суммарной прибыли. Прибыль с предприятий задается таблицей 1.1.

Таблица 1.1

X

g1

g2

g3

g4

0

0

0

0

0

20

11

24

12

35

40

26

22

28

33

60

31

32

37

36

80

42

41

47

40

100

58

59

53

54


Процесс оптимизации разобьем на n шагов (в нашей задаче n =4). На k-м шаге будем оптимизировать инвестирование не всех предприятий, а только с k-го по n-е. При этом на них расходуются не все средства, а некоторая меньшая сумма Ck≤Т, которая и будет являться переменной состояния системы. Переменной управления на k-м шаге назовем величину xk средств, вкладываемых в k-ое предприятие. В качестве функции Беллмана Fk(Ck) на k-м шаге в этой задаче можно выбрать максимально возможную прибыль, которую можно получить с предприятий с k-го по n-е при условии, что на их инвестирование осталось Ck средств. Очевидно, что при вложении в k-е предприятие xk средств получим прибыль gk(xk), а система в (k+1)-му шагу перейдет в состояние Ck+1 = Ck – xk, т.е. на инвестирование предприятий с (k+1)-ого до n-го останется Ck+1 средств.

Таким образом, на первом шаге условной оптимизации при k=n функция Беллмана представляет собой прибыль только с n-го предприятия. При этом на его инвестирование может выделяться количество средств Ck, 0≤Ck≤Т. Очевидно, чтобы получить максимум прибыли с этого последнего последнего предприятия, надо вложить в него все эти средства, т.е. Fn(Cn)=gn(Cn) и xn=Cn.

На каждом из последующих шагов для вычисления функции Беллмана следует использовать результаты предыдущего шага. Максимально возможная прибыль, которая может быть получена предприятиями с k-го по n-е, равна:

.

Максимум этого выражения достигается на некотором значении x*k, которое и является оптимальным управлением на k-м шаге для состояния системы Ck. Аналогично можно отыскать функции Беллмана и оптимальные управления вплоть до шага k=1.

Функция Беллмана F1(C1) представляет собой максимально возможную прибыль со всех предприятий (с 1-го по n-е), а значение x*k, на котором достигается максимум прибыли, является оптимальным количеством средств, которые необходимо вложить в 1-е предприятие. Далее, для всех последующих шагов вычисляется величина Ck = Ck-1 – Xk и оптимальным управлением на k-м шаге является то значение Xk, которое доставляет максимум прибыли при соответствующем состоянии системы Ck.

Решение.

Этап I. Условная оптимизация.

Шаг 1. k = 4. Предполагаем, что все средства 100 ден.ед. переданы на инвестирование третьего предприятия. В этом случае максимальная прибыль составит F4(C4) = 54, см. таблицу 1.2.

Таблица 1.2

С4

x4

F4(C4)

X*4

0

20

40

60

80

100

0

0

0

0

20

35

35

20

40

33

33

40

60

36

36

60

80

40

40

80

100

54

54

100


Шаг 2. k = 3. Определяем оптимальную стратегию инвестирования во второе и третье предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:

.

На его основании рассчитываются данные таблицы 1.3.

Таблица 1.3

С3

x3

F3(C3)

X*3

0

20

40

60

80

100

0

0

 

 

 

 

 

0

0

20

35

12

 

 

 

 

35

0

40

33

47

28

 

 

 

47

20

60

36

45

63

37

 

 

63

40

80

40

48

61

72

47

 

72

60

100

54

52

64

70

82

53

82

80


Шаг 3. k = 2. Определяем оптимальную стратегию инвестирования в первое и остальные предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:

.

На его основе находятся данные таблицы 1.4.

Таблица 1.4

С2

x2

F2(C2)

X*2

0

20

40

60

80

100

0

0






0

0

20

35

24





35

0

40

47

59

22




59

20

60

63

71

57

32



71

20

80

72

87

69

67

41


87

20

100

82

96

85

79

76

59

96

20


Шаг 4. k = 1. Определяем оптимальную стратегию инвестирования в первое и остальные предприятия. При этом рекуррентное соотношение Беллмана будет иметь вид:

.

На его основе находятся данные таблицы 1.5.

Таблица 1.5

С1

x1

F1(C1)

X*1

 0

20

40

60

80

100

0

0

 

 

 

 

 

0

0

20

35

11

 

 

 

 

35

0

40

59

46

26

 

 

 

59

0

60

71

70

61

31

 

 

71

0

80

87

82

85

66

42

 

87

0

100

96

98

97

90

77

58

98

20


Этап II. Безусловная оптимизация.

Шаг 1. По данным таблицы 1.5 максимальный доход при распределении 100 ден.ед. между тремя предприятиями составляет F1= 98. При этом первому предприятию нужно выделить x1 = 20 ден.ед.

Шаг 2. Определяем величину оставшихся денежных средств, приходящуюся на долю второго и третьего предприятий:

С2 = С1 – x*1 = 100 – 20 = 80.

По данным таблицы 1.4 находим, что оптимальный вариант распределения денежных средств размером 80 ден.ед. между вторым, третьим и четвертым предприятиями составляет F2 = 96 ден.ед. при выделении второму x2 = 20 ден.ед.

Шаг 3. Определяем величину оставшихся денежных средств, приходящуюся на долю третьего и четвертого предприятия:

С3 = С2 – x*2 = 80 – 20 = 60.

Из таблицы 1.3 находим F3 = 63 и x*3 = 40 ден.ед. При этом получается что x*4 = 20 ден.ед. и F4 = 35.

Таким образом, оптимальный план инвестирования предприятий

X* = (20,40,20,20),

обеспечивающий максимальный доход

F(100) = g1(20) + g2(40) + g3(20) + g4(20) = 11 + 24 + 28 + 35 = 98 ден.ед.

Ответ: Максимальная суммарная прибыль по четырем предприятиям составляет 98 ден.ед.

2 Задача выбора оптимального пути в транспортной сети

Задача: В предложенной транспортной сети (см. рисунок 1) имеется несколько маршрутов по проезду из начального пункта (1) в конечный пункт (11). Стоимость проезда между отдельными пунктами транспортной сети представлена в таблице 2.1. Необходимо определить оптимальный маршрут проезда из пункта 1 в пункт 11 с минимальными транспортными расходами.

Рисунок 1


Таблица 2.1

Начальный путь

Конечный путь

T(i,j)

1

2

5

1

3

7

1

4

6

1

10

2

6

3

2

7

7

3

6

8

3

7

9

4

6

11

4

7

4

5

6

8

5

7

9

6

8

4

6

9

5

6

10

4

7

8

5

7

9

12

7

10

6

8

11

10

9

11

8

10

11

10


В данной задаче имеется ограничение – двигаться по магистралям можно только слева направо. Это дает нам возможность разбить всю транспортную сеть на пояса и отнести каждый из десяти пунктов к одному из четырех поясов. Будем говорить, что пункт принадлежит k-му поясу, если из него можно попасть в конечный пункт ровно за k шагов, т.е. заездом ровно в k-1 промежуточный пункт. Таким образом, пункты 8, 9 и 10 принадлежат к первому поясу; 6 и 7 – ко второму; 2, 3, 4 и 5 – к третьему; 1 – к четвертому. На k-м шаге будем находить оптимальные маршруты из городов k-го пояса до конечного пункта.

Оптимизацию будем производить с хвоста процесса, и потому, добравшись до k-го шага, мы не можем знать, в какой именно из городов k-го пояса мы попадем, двигаясь из пункта 1. Поэтому для каждого из этих городов мы должны будем найти оптимальный маршрут до конечного пункта. Очевидно, что минимально возможная стоимость проезда до пункта 11 будет зависеть только от того, в каком из городов этого пояса мы оказались. Номер S города, принадлежащего k-му поясу, и будет называться переменной состояния данной системы на k-м шаге. Нужно помнить, что, добравшись до k-го шага, мы уже осуществили предыдущие шаги, в частности, нашли оптимальные маршруты по перемещению из любого города (k-1)-го пояса в конечный пункт. Таким образом, находясь в некотором городе S k-го пояса, мы должны принять решение о том, в какой из городов (k-1)-го пояса следует отправиться, а направление дальнейшего движения уже известно нам из предыдущих шагов. Номер J города (k-1)-го пояса будет являться переменной управления на k-м шаге.

Функция Беллмана на k-м шаге решения задачи дает нам возможность рассчитать минимальную стоимость проезда из города S (k-го пояса) до конечного пункта. Для первого шага (k=1) эту величину отыскать не сложно – это стоимость проезда из городов 1-го пояса непосредственно до конечного пункта: F1(i)=Ci11. Для последующих же шагов стоимость проезда складывается из двух слагаемых – стоимости проезда из города S k-го пояса в город J (k-1)-го пояса и минимально возможной стоимости проезда из города J до конечного пункта, т.е. Fk-1(J).

Таким образом, функциональное уравнение Беллмана на k-м шаге решения будет иметь вид:


Минимум стоимости достигается на некотором значении J*, которое и является оптимальным направлением движения из пункта S в сторону конечного пункта.

Решение:

Этап I. Условная оптимизация.

Шаг 1. k = 1. F1(S) = ts11.

Таблица 2.2

S

J = 11

F1(S)

J*

8

10

10

11

9

8

8

11

10

10

10

11


Шаг 2. k = 2. Функциональное уравнение на данном шаге принимает вид:

.

Результаты расчета по приведенной формуле приведены в таблице 2.3:

Таблица 2.3

S

J = 8

J = 9

J = 10

F2(S)

J*

6

4 + 10

5 + 8

4 + 10

13

9

7

5 + 10

12 + 8

6 + 10

15

8


Шаг 3. k = 3. Функциональное уравнение на данном шаге принимает вид:

.

Результаты расчета по приведенной формуле приведены в таблице 2.4:

Таблица 2.4

S

J = 6

J = 7

F3(S)

J*

2

3 + 13

7 + 15

16

6

3

8 + 13

9 + 15

21

6/7

4

11 + 13

4 + 15

19

7

5

8 + 13

9 + 15

21

6/7


Шаг 4. k = 4. Функциональное уравнение на данном шаге принимает вид:

.

Результаты расчета по приведенной формуле приведены в таблице 2.5:

Таблица 2.5

S

J = 2

J = 3

J = 4

J = 5

F4(S)

J*

1

5 + 16

7 + 21

6 + 19

10 + 21

21

2


Этап II. Безусловная оптимизация.

На этапе условной оптимизации получено, что минимальные затраты на проезд из пункта 1 в пункт 11 составляют F4(1) = 21, что достигается следующим движением по магистралям. Из пункта 1 следует направиться в пункт 2, затем из него в пункт 6, затем в пункт 9 и из него в пункт 11.

Ответ: Оптимальным маршрутом из пункта 1 в пункт 11 является маршрут 1 – 2 – 6 – 9 – 11.

3 Методы Хэмминга и Брауна

Задача: На эмпирическом временном ряде из 20 значений ( таблица 3.1), используя процедуры обычной регрессии, Хэмминга (А и Б-метод) и Брауна, выполнить прогноз на один шаг и на три-четыре шага вперед для каждого метода соответственно. Сравнить прогнозные процедуры. Сделать выводы.

Таблица 3.1

t

Y(t)

1

50

2

53

3

56,5

4

53,5

5

51

6

54

7

53,5

8

60

9

59

10

60

11

61

12

62

13

58

14

57

15

57,5

16

59,5

17

60,5

18

61

19

62

20

62,5


3.1 Метод Хемминга

Метод Хемминга обладает достоинствами, связанными с простотой и относительно небольшой погрешностью. Существует в двух модификациях. Базовый алгоритм (А-метод Хемминга) применяется для прогнозирования относительно стабильных или слабо изменяющихся динамических рядов, имеющих фиксированную структуру.

,

где  – прогнозное значение;

 - значение функции;

 - порядковый номер элемента, входящего в состав исследуемого объекта;

 - время запаздывания или исследование обрабатываемых данных (реализация функций объекта);

,,,, - коэффициенты настройки, задаваемые жестко, в виде числа.

Для каждого ряда коэффициенты задаются индивидуально. Число коэффициентов всегда не четное. Сумма всех коэффициентов всегда должна быть равной 1 ().

Наиболее удачными, по мнению Хемминга, являются коэффициенты для 3 и 5 слагаемых (таблица 3.2).

Таблица 3.2


А1

А2

А3

А4

А5

для трех

0,60

0,30

0,10



для пяти

0,65

0,15

0,10

0,04

0,01


Данный алгоритм прошел апробацию и достаточно точно прогнозирует переменные различного рода технологических и транспортных операций в нормальном режиме эксплуатации. Однако при применении в случае нештатного и аварийного режимов производства имеет место значительная погрешность, т.е. больше 15%.

Исследования показали, что для увеличения адаптивных возможностей требуется методика настройки коэффициентов, алгоритм которой и включает В-метод Хемминга.

Идея заключается в следующем: в фиксированный момент времени t1 (в который обнаружилось превышение порога погрешности в 5%) рассматривается автокорреляционная функция (АКФ) ряда . При этом оценивается величина вклада каждой из компонент  в t2, и рассчитываются соответствующие коэффициенты:

Шаг 1: оценивается величина площади под АКФ

;

Шаг 2: коэффициенты рассчитываются по формуле

.

Модифицированный метод проверялся на реальных данных нестационарной динамики, и погрешности не превышали 5-10%, что вполне приемлемо для подобных задач.

Решение:

Результаты моделирования по методу Хэмминга представлены в таблице 3.3.

Таблица 3.3

1

50,0

50,000

0,00

2

53,0

53,000

0,00

3

56,5

54,800

1,70

4

53,5

54,350

0,85

5

51,0

52,300

1,30

6

54,0

53,050

0,95

7

53,5

53,400

0,10

8

60,0

57,450

2,55

9

59,0

58,750

0,25

10

60,0

59,700

0,30

11

61,0

60,500

0,50

12

62,0

61,500

0,50

13

58,0

59,500

1,50

14

57,0

57,800

0,80

15

57,5

57,400

0,10

16

59,5

58,650

0,85

17

60,5

59,900

0,60

18

61,0

60,700

0,30

19

62,0

61,550

0,45

20

62,5

62,200

0,30

21


61,855


22


61,928


23


61,933


24


61,924



Прогнозные значение на основе базового алгоритма Хэмминга (А-метод ):

;

;

;

.

На основе полученных данных построим график прогнозирования по адаптивной модели Хемминга (рисунок 2)

Рисунок 2


Оценим адекватность модели с помощью коэффициента детерминации. Для этого рассчитаем

,

остальные расчеты представлены в таблице 3.4.

Таблица 3.4

50,0

0,000

57,381

53,0

0,000

20,931

56,5

2,890

1,156

53,5

0,722

51,0

1,690

43,231

54,0

0,903

12,781

53,5

0,010

16,606

60,0

6,503

5,881

59,0

0,063

2,031

60,0

0,090

5,881

61,0

0,250

11,731

62,0

0,250

19,581

58,0

2,250

0,181

57,0

0,640

0,331

57,5

0,010

0,006

59,5

0,723

3,706

60,5

0,360

8,556

61,0

0,090

11,731

62,0

0,203

19,581

62,5

0,090

24,256

17,735

282,138


Коэффициент детерминации находится по формуле:

 



3.2 Метод Брауна

Также считается адаптивным алгоритмом прогнозирования, и в основном используется при краткосрочном прогнозировании.

,

где k – количество шагов прогнозирования (k=1).

Это значение сравнивается с фактическим уровнем

,

который затем используется для корректировки модели.

,

,

где  – коэффициент дисконтирования данных, отражает большую степень доверия к более поздним данным, .

Решение:

Начальные оценки параметров получим по первым пяти точкам (они представлены в таблице 3.5) по формулам:

,

Таблица 3.5

1

50,0

5,6

4

2

53.0

-0,2

1

3

56,5

0,0

0

4

53,5

0,7

1

5

51,0

-3,6

4


2,5

10


Для расчета этой таблицы нам понадобилось  и .

Результаты моделирования по методу Брауна представлены в таблице 3.6.

Таблица 3.6

0


0,250

52,050



1

50,0

-0,578

51,472

52,300

-2,300

2

53,0

0,180

51,652

50,894

2,106

3

56,5

1,861

53,513

51,832

4,668

4

53,5

1,186

54,699

55,373

-1,873

5

51,0

-0,572

54,126

55,885

-4,885

6

54,0

-0,412

53,715

53,554

0,446

7

53,5

-0,341

53,374

53,303

0,197

8

60,0

2,167

55,541

53,033

6,967

9

59,0

2,632

58,173

57,708

1,292

10

60,0

2,342

60,516

60,806

-0,806

11

61,0

1,673

62,189

62,858

-1,858

12

62,0

1,003

63,192

63,862

-1,862

13

58,0

-1,227

61,965

64,195

-6,195

14

57,0

-2,573

59,392

60,738

-3,738

15

57,5

-2,328

57,064

56,819

0,681

16

59,5

-0,613

56,451

54,737

4,763

17

60,5

1,065

57,517

55,839

4,661

18

61,0

1,936

59,452

58,582

2,418

19

62,0

2,156

61,608

61,388

0,612

20

62,5

1,701

63,309

63,764

-1,264

21




65,010


22




66,711


23




68,412


24




70,112



Для осуществления прогноза на несколько точек вперед рассмотрели полученную на последнем шаге модель


Прогнозные оценки по этой модели получаются подстановкой в нее значений , таким образом:

,

,

,

.

На основе полученных данных построим график прогнозирования по адаптивной модели Брауна (рисунок 3)

Рисунок 3


Оценим адекватность модели с помощью коэффициента детерминации. Для этого рассчитаем

,

остальные расчеты представлены в таблице 3.7.

Таблица 3.7

50

5,290

57,381

53

4,435

20,931

56,5

21,787

1,156

53,5

3,509

16,606

51

23,863

43,231

54

0,199

12,781

53,5

0,039

16,606

60

48,541

5,881

59

1,668

2,031

60

0,649

5,881

61

3,452

11,731

62

3,469

19,581

58

38,377

0,181

57

13,969

0,331

57,5

0,463

0,006

59,5

22,690

3,706

60,5

21,729

8,556

61

5,847

11,731

62

0,374

19,581

62,5

1,599

24,256

221,950

282,138


Коэффициент детерминации находится по формуле:

 



Вывод: Сравнивая коэффициенты детерминации по методам Хемминга и Брауна, равные 0,937 и 0,213 соответственно, делаем вывод что модель Хемминга является наиболее адекватной.

4 Идентификация как функция управления

В таблице 4.1 приведены данные о стоимости эксплуатации винтовых самолетов в зависимости от возраста:

Таблица 4.1

Возраст

Стоимость

1,0

466

1,0

549

1,0

978

4,0

495

4,0

723

4,0

681

4,5

619

4,5

1049

4,5

1033

5,0

163

5,0

182

5,0

890

5,0

1522

5,0

1194

987

6,0

764

6,0

1373


1. Провести процедуру структурно-параметрической идентификации математической модели для исходных данных. Оценить адекватность.

2. Проанализируйте данные, исключив повторы. Ответьте на вопросы: изменилось ли математическая модель? Как изменился коэффициент детерминации? Адекватна ли подобранная модель данным?

Решение:

Построим график эмпирических данных (рисунок 4).

Рисунок 4- График эмпирических данных


Проведем все необходимые расчеты для составления статистического уравнения однофакторной зависимости и дальнейшего анализа этой зависимости. Для этого рассмотрим три модели:

прямая однофакторная линейная связь при одновременном увеличении факторного и результативного признаков;

логарифмическая модель (прямая гипербола, когда уровень результативного признака возрастает, а затем его рост приостанавливается, оставаясь почти на одном уровне);

прямая логическая зависимость (когда происходит неустойчивое возрастание уровня результативного признака).

Линейная модель.

Уравнение модели прямой однофакторной линейной связи:


Для вычисления параметра , составления уравнения однофакторной зависимости и дальнейшего анализа этой зависимости заполним таблицу 4.2.

Таблица 4.2

1,0

466

0,0

0,000

0,000

466,000

1,0

549

0,0

0,178

0,000

466,000

1,0

978

0,0

1,099

0,000

466,000

4,0

495

3,0

0,062

0,685

785,222

4,0

723

3,0

0,552

0,685

785,222

4,0

681

3,0

0,461

0,685

785,222

4,5

619

3,5

0,328

0,799

838,426

4,5

1049

3,5

1,251

0,799

838,426

4,5

1033

3,5

1,217

0,799

838,426

5,0

163

4,0

-0,650

0,913

891,630

5,0

182

4,0

-0,609

0,913

891,630

5,0

890

4,0

0,910

0,913

891,630

5,0

1522

4,0

2,266

0,913

891,630

5,0

1194

4,0

1,562

0,913

891,630

5,5

987

4,5

1,118

1,028

944,833

6,0

764

5,0

0,639

1,142

998,037

6,0

1373

5,0

1,946

1,142

998,037

54,0

12,330




Примечание. Предпоследний и последний столбцы таблицы 4.2 заполняются после отыскания параметра уравнения зависимости  и составления самого уравнения зависимости.

В рассматриваемом примере параметр , при  и  вычисляется по формуле:


В рассматриваемом примере окончательный вид уравнения зависимости находим по формуле.:


Отобразим эмпирические и теоретические значения результативного признака на графике (рисунок 4).

Рисунок 4


Информация для расчета коэффициента детерминации в типовой задаче в полном объеме представлена в таблице 4.3.

Таблица 4.3

()

1,0

466

0,000

466,000

0,000

0,000

0,000

0,000

1,0

549

0,178

466,000

0,032

0,000

0,178

0,032

1,0

978

1,099

466,000

1,207

0,000

1,099

1,207

4,0

495

0,062

785,222

0,004

0,685

-0,623

0,388

4,0

723

0,552

785,222

0,304

0,685

-0,134

0,018

4,0

681

0,461

785,222

0,213

0,685

-0,224

0,050

4,5

619

0,328

838,426

0,108

0,799

-0,471

0,222

4,5

1049

1,251

838,426

1,565

0,799

0,452

0,204

4,5

1033

1,217

838,426

1,480

0,799

0,418

0,174

5,0

163

-0,650

891,630

0,423

0,913

-1,564

2,445

5,0

182

-0,609

891,630

0,371

0,913

-1,523

2,319

5,0

890

0,910

891,630

0,828

0,913

-0,003

0,000

5,0

1522

2,266

891,630

5,135

0,913

1,353

1,830

5,0

1194

1,562

891,630

2,441

0,913

0,649

0,421

5,5

987

1,118

944,833

1,250

1,028

0,090

0,008

6,0

764

0,639

998,037

0,409

1,142

-0,502

0,252

6,0

1373

1,946

998,037

3,788

1,142

0,805

0,647

12,330


19,558



10,217


По данным таблицы 4.3 коэффициент детерминации составит:


Логарифмическая модель

Уравнение модели прямой гиперболы:


Для вычисления параметра , составления уравнения однофакторной зависимости и дальнейшего анализа этой зависимости заполним таблицу 4.4.

Таблица 4.4

1,0

466

0,000

0,000

0,000

466,000

1,0

549

0,000

0,178

0,000

466,000

1,0

978

0,000

1,099

0,000

466,000

4,0

495

0,750

0,062

1,006

934,912

4,0

723

0,750

0,552

1,006

934,912

4,0

681

0,750

0,461

1,006

934,912

4,5

619

0,778

0,328

1,044

952,279

4,5

1049

0,778

1,251

1,044

952,279

1033

0,778

1,217

1,044

952,279

5,0

163

0,800

0,650

1,073

966,172

5,0

182

0,800

0,609

1,073

966,172

5,0

890

0,800

0,910

1,073

966,172

5,0

1522

0,800

2,266

1,073

966,172

5,0

1194

0,800

1,562

1,073

966,172

5,5

987

0,818

1,118

1,098

977,540

6,0

764

0,833

0,639

1,118

987,013

6,0

1373

0,833

1,946

1,118

987,013

11,068

14,850

14,850



Примечание. Предпоследний и последний столбцы таблицы 4.4 заполняются после отыскания параметра уравнения зависимости  и составления самого уравнения зависимости.

В рассматриваемом примере параметр , при  и  вычисляется по формуле:


В рассматриваемом примере окончательный вид уравнения зависимости находим по формуле:


Отобразим эмпирические и теоретические значения результативного признака на графике (рисунок 5).

Рисунок 5


Информация для расчета коэффициента детерминации в типовой задаче в полном объеме представлена в таблице 4.5.

Таблица 4.5

()

1,0

466

0,000

466,000

0,000

0,000

0,000

0,00000

1,0

549

0,178

466,000

0,032

0,000

0,178

0,03172

1,0

978

1,099

466,000

1,207

0,000

1,099

1,20717

4,0

495

0,062

934,912

0,004

1,006

-0,944

0,89117

4,0

723

0,552

934,912

0,304

1,006

-0,455

0,20679

4,0

681

0,461

934,912

0,213

1,006

-0,545

0,29689

4,5

619

0,328

952,279

0,108

1,044

-0,715

0,51150

4,5

1049

1,251

952,279

1,565

1,044

0,208

0,04308

4,5

1033

1,217

952,279

1,480

1,044

0,173

0,03001

5,0

163

0,650

966,172

0,423

1,073

-0,423

0,17903

5,0

182

0,609

966,172

0,371

1,073

-0,464

0,21519

5,0

890

0,910

966,172

0,828

1,073

-0,163

0,02672

5,0

1522

2,266

966,172

5,135

1,073

1,193

1,42268

5,0

1194

1,562

966,172

2,441

1,073

0,489

0,23902

5,5

987

1,118

977,540

1,250

1,098

0,020

0,00041

6,0

764

0,639

987,013

0,409

1,118

-0,479

0,22903

6,0

1373

1,946

987,013

3,788

1,118

0,828

0,68608

14,850


19,558



6,21649


По данным таблицы 4.5 коэффициент детерминации составит:


Логическая модель

Уравнение модели прямой логической зависимости:


Для вычисления параметра , составления уравнения однофакторной зависимости и дальнейшего анализа этой зависимости заполним таблицу 5.

Таблица 4.6

1,0

466

1,00000

0,00215

0,00000

0,00000

0,00000

466,00000

1,0

549

1,00000

0,00182

0,00000

0,00032

0,00000

466,00000

1,0

978

1,00000

0,00102

0,00000

0,00112

0,00000

466,00000

4,0

495

0,25000

0,00202

0,75000

0,00013

0,00039

570,13230

4,0

723

0,25000

0,00138

0,75000

0,00076

0,00039

570,13230

4,0

681

0,25000

0,00147

0,75000

0,00068

0,00039

570,13230

4,5

619

0,22222

0,00162

0,77778

0,00053

0,00041

574,89026

4,5

1049

0,22222

0,00095

0,77778

0,00119

0,00041

574,89026

4,5

1033

0,22222

0,00097

0,77778

0,00118

0,00041

574,89026

5,0

163

0,20000

0,00613

0,80000

-0,00399

0,00042

578,75418

5,0

182

0,20000

0,00549

0,80000

-0,00335

0,00042

578,75418

5,0

890

0,20000

0,00112

0,80000

0,00102

0,00042

578,75418

5,0

1522

0,20000

0,00066

0,80000

0,00149

0,00042

578,75418

5,0

1194

0,20000

0,00084

0,80000

0,00131

0,00042

578,75418

5,5

987

0,18182

0,00101

0,81818

0,00113

0,00043

581,95443

764

0,16667

0,00131

0,83333

0,00084

0,00044

584,64846

6,0

1373

0,16667

0,00073

0,83333

0,00142

0,00044

584,64846



11,06818

0,00578




Примечание. Предпоследний и последний столбцы таблицы 4.6 заполняются после отыскания параметра уравнения зависимости  и составления самого уравнения зависимости.

В рассматриваемом примере параметр , при  и  вычисляется по формуле:


В рассматриваемом примере окончательный вид уравнения зависимости находим по формуле:


Отобразим эмпирические и теоретические значения результативного признака на графике (рисунок 6).

Рисунок 6


Информация для расчета коэффициента детерминации в типовой задаче в полном объеме представлена в таблице 4.7.

Таблица 4.7

()

1,0

466

0,000

466,00

0,0000000

0,0000000

0,0000000

0,0000000

1,0

549

0,000

466,00

0,0000001

0,0000000

0,0003244

0,0000001

1,0

978

0,001

466,00

0,0000013

0,0000000

0,0011234

0,0000013

4,0

495

0,000

570,13

0,0000000

0,0003919

-0,0002662

0,0000001

4,0

723

0,001

570,13

0,0000006

0,0003919

0,0003709

0,0000001

4,0

681

0,001

570,13

0,0000005

0,0003919

0,0002856

0,0000001

4,5

619

0,001

574,89

0,0000003

0,0004065

0,0001240

0,0000000

4,5

1049

0,001

574,89

0,0000014

0,0004065

0,0007862

0,0000006

4,5

1033

0,001

574,89

0,0000014

0,0004065

0,0007714

0,0000006

5,0

163

-0,004

578,75

0,0000159

0,0004181

-0,0044071

0,0000194

5,0

182

-0,003

578,75

0,0000112

0,0004181

-0,0037667

0,0000142

5,0

890

0,001

578,75

0,0000010

0,0004181

0,0006043

0,0000004

5,0

1522

0,001

578,75

0,0000022

0,0004181

0,0010708

0,0000011

5,0

1194

0,001

578,75

0,0000017

0,0004181

0,0008903

0,0000008

5,5

987

0,001

581,95

0,0000013

0,0004276

0,0007052

0,0000005

6,0

764

0,001

584,65

0,0000007

0,0004355

0,0004015

0,0000002

6,0

1373

0,001

584,65

0,0000020

0,0004355

0,0009821

0,0000010

0,006


0,0000416



0,0000404


По данным таблицы 4.7 коэффициент детерминации составит:


Сравним коэффициенты детерминации по трем моделям

Таблица 4.8

Тип трендовой модели

Уравнения зависимостей

Линейная

0,477

Логарифмическая

0,682

Логическая

0,028


 Чем слабее линейная связь между X и Y, тем R2 ближе к нулю, и чем эта связь значительнее, тем ближе R2 к единице.

Вывод: Анализируя результаты представленные в таблице 4.8 можно прийти к выводу что из представленных трендовых моделей, логарифмическая модель является наиболее адекватной.

5 Стимулирование и мотивация как функции управления

1. Задача стимулирования для одноэлементной системы.

Руководитель поручает рабочему производство продукции, используя следующую систему стимулирования: , где α – ставка оплаты единицы произведенной агентом продукции. Цена, по которой центр продаёт продукцию, p=1000 руб. Затраты агента, выраженные в денежной форме:  Определить параметр системы стимулирования α.

Решение:

Запишем целевую функцию центра:

 

(3.1.1)

и целевую функцию агента:

 

(3.1.2)

Задача стимулирования формулируется:

(3.1.3)

(3.1.4)

Данная задача решается в 2 этапа. На первом этапе из выражения (3.1.4) определяется реакция агента как аналитическая зависимость от параметра системы стимулирования центра α . На втором этапе полученная аналитическая зависимость подставляется в формулу (3.1.3), получается задача безусловной оптимизации. Решая эту задачу, определим параметр системы стимулирования α.

Первый этап. Найдем реакцию агента из решения оптимизационной задачи (3.1.4). Для этого продифференцируем выражение (3.1.4) по y и приравняем к нулю:

 

Решая уравнение, определим реакцию агента:

 

Второй этап. Подставим реакцию агента в целевую функцию (3.1.3):

 

Вычислим первую производную и приравняем к нулю:

 


Решая уравнение, определим параметр α:

 

Ответ: параметр системы стимулирования равен 500.

2. Задача стимулирования для многоэлементной системы со слабосвязанными агентами.

Руководитель поручает работу бригаде, состоящей из двух рабочих. Центр использует пропорциональную систему стимулирования: , где – ставка оплаты единицы произведенной i-м агентом продукции. Известна функция затрат каждого агента:

Рыночная цена, по которой продается продукция р=1000 руб., фонд заработной платы бригады R=20000 руб. Определить параметры системы стимулирования и .

Решение

Сформулируем задачу стимулирования:

 

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

Первый этап. Из выражения (3.2.2) и (3.2.3) определим реакцию агентов.

Для нахождения экстремума функции одной переменной продифференцируем функции и приравняем к нулю:

 




Из решения уравнений следует:

 




Второй этап. Подставив и  в выражение для целевой функции центра (3.2.1) и ограничение (3.2.4), получим задачу на условный экстремум:

 



Для ее решения применим метод множителей Лагранжа. Запишем функцию Лагранжа:

 


Найдём частные производные от функции Лагранжа по неизвестным ,и :(3.2.5)

 

(3.2.6)

(3.2.7)

Выразим из (3.2.5) и (3.2.6) неизвестные ,:

 


Получилось, что параметры функций стимулирования для обоих агентов одинаковы. Из ограничения (3.2.7) определяем параметр системы стимулирования:

 

Ответ: Параметры системы стимулирования и равны между собой и равны 30,98.

3. Задача стимулирования для многоэлементной системы с сильносвязанными агентами.

Руководитель (центр) поручает работу бригаде, состоящей из 2 рабочих. Рабочие (агенты) изготавливают однородную продукцию объёмом yi , которую центр продаёт по цене p=1500. Центр использует пропорциональную систему стимулирования

,

где  – ставка оплаты единицы продукции.

Затраты агентов определяются соответственно:

,

.

Фонд заработной платы, которым располагает центр составляет R=37000 денежных единиц. Определить параметры системы стимулирования .

Решение

Запишем целевую функцию центра:

 

(3.3.1)

и целевые функции агентов:

 

(3.3.2)

(3.3.3)

Сформулируем задачу стимулирования:

(3.3.4)

(3.3.5)

(3.3.6)

Первый этап. Найдем реакцию первого агента из решения оптимизационной задачи. Для этого продифференцируем целевую функцию агента по  и приравняем к нулю:

 


Решая уравнение, определим реакцию первого агента:

 


Аналогично найдём реакцию второго агента:

 




Решив систему уравнений:

 




относительно y1 и y2получим реакции агентов:

 




Второй этап. Подставим реакции агентов в целевую функцию центра:

 


Продифференцировав это выражение по , и приравняв нулю, получим систему уравнений:

 




Решив полученную систему уравнений, определим параметры системы

стимулирования и

Ответ: параметры системы стимулирования  и  равны 645,83 и 961,01 соответственно.


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!