Большая коллекция шпор для МАТАНа (1 семестр 1 курс)

  • Вид работы:
    Ответы на вопросы
  • Предмет:
    Математика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    3,65 Mb
  • Опубликовано:
    2008-12-09
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Большая коллекция шпор для МАТАНа (1 семестр 1 курс)

Точки экстремума и экстремумы функций:

Функция u=f(Р) имеет максимум (минимум) в точке P0(x01,...,x0n), если существует такая окрестность точки P0, для всех точек Р (x1,...,xn)которой, отличных от точки P0, вы­полняется неравенство f(Р0)>f(Р) (соответственно f(Р0)<f(P)). Максимум или минимум функции наз. её экстремумом. Необходимое условие экстремума: Если дифферен­цируемая функция f(Р) достигает экстремума в точке P0, то в этой точке

f'xk(P0)=0 для всех k=1,2,...,n {1} или df(P0,Dx1,...,Dxn)=0   тождественно относительно ,Dx1,...,Dxn. Точки, в которых выполняются условия {1} наз. стационарными точками функции u=f(Р). Таким образом, если P0 – точка экстремума функции u=f(P), то либо P0 – стационарная точка, либо в этой точке функция не дифференцируема. Достаточные условия экстремума. Пусть P0(x01,...,x0n) – стационарная точка функции u=f(P), причем эта функция дважды дифференцируема в некоторой окрестности точки P0 и все её вторые частные производные непрерывны в точке P0. Тогда: (1) если второй дифференциал d2u(P0(Dx1,...,Dxn)) как функ­ция Dx1,...,Dxn имеет постоянный знак при всевозможных наборах значений Dx1,...,Dxn не равных одновременно нулю, то функция u=f(P) имеет в точке P0 экстремум, а именно – максимум при d2u(P0(Dx1,...,Dxn))<0 и минимум при d2u(P0(Dx1,...,Dxn))>0; (2) если d2u(P0(Dx1,...,Dxn)) является знакопеременной функ­цией Dx1,...,Dxn, т.е. принимает как положительные, так и отри­цательные значения то точка P0 не является точкой экстремума функции u=f(P); (3) если d2u(P0(Dx1,...,Dxn))³0 или d2u(P0(Dx1,...,Dxn))£0, причем, существуют такие наборы значений Dx1,...,Dxn не равных одновременно нулю, для которых значение второго дифференциала обращается в нуль, то функция, u=f(P) в точке P0 может иметь экстремум, но может и не иметь его (в этом случае для выяснения вопроса требуется дополнительное исследование). В частном случае функции двух переменных достаточные условия экстремума можно сформулировать следующим образом. Пусть P0(x0,y0) – стационарная точка функции z=f(x,y) причем эта функция дважды дифференцируема в некоторой окрестности точки P0 и все её вторые частные производные непрерывны в точке P0. Введем обозначения: A=f''xx(x0,y0), B=f''xx(x0,y0), C=f''xx(x0,y0) D=AC–B2. Тогда: [1] если D>0, то функция z=f(х,у) имеет в точке Р0(x0,y0) экстремум, а именно – максимум при А<0 (С<0) и минимум при А>0 (С>0); [2] если D<0, то экстремум в точке Р0(x0,y0) отсутствует; [3] если D=0, то требуется дополнительное исследование.

Похожие работы на - Большая коллекция шпор для МАТАНа (1 семестр 1 курс)

 

Не нашел материал для своей работы?
Поможем написать качественную работу
Без плагиата!