Люминисценция

  • Вид работы:
    Реферат
  • Предмет:
    Неопределено
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    63,11 kb
  • Опубликовано:
    2008-11-24
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Люминисценция

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра ЭТТ



РЕФЕРАТ

на тему:

«ЛЮМИНИСЦЕНЦИЯ»















МИНСК, 2008

1. Люминисценция

Явление, при котором вещество, либо по­глощая энергию света ионизирующего или другого излучения, либо под действием различных химических реакций переходит в возбужденное состояние, а за­тем, возвращаясь в исходное состояние, излучает по­лученную энергию в виде света, называют люминес­ценцией. Кратковременное люминесцентное излучение, прекращающееся почти сразу с окончанием возбуждения, это флюоресценция, а длительное, продолжающееся и после окончания возбуждения, - фосфоресценция. Явления люминесценции делятся на несколько видов, в зависимости от способа возбуждения (табл. 1).

Фотолюминесценция - свечение вещества при об­лучении светом. Фотолюминесцентные материалы это возбуждаемые ультрафиолетовым излучением со­единения Y2O3:Eu3+ (красное свечение) и CaWO4:Pb (сине-зеленое свечение), рабочие тела лазеров, такие, как рубин (Al2O3: Сг3+), неодимовое стекло, органи­ческие красители, подобные родамину 6Ж, и многие другие.

Катодная люминесценция - свечение вещества при облучении пучком электронов. Пример  материалов для катодной люминесценции - ZnS:Cu, Al (зеленое свечение), Y2O3S:Eu4 и модификации ZnO (красное свечение). Существуют также материалы, светящиеся при бомбардировке низкоскоростными электронами: ZnO:Zn (зеленое свечение), ZnS:Ag + In2O3 (сине-зеленое свечение) и им подобные.

Электролюминесценция - свечение вещества под действием электрического поля. При этом свечение под действием сильного поля, увеличивающего кине­тическую энергию носителей заряда в веществе, на­зывают предпробной электролюминесценцией, а излучение света, возбуждаемое инжектированными носителями за счет разности их потенциальных энер­гий, созданной в твердом теле, называют инжекционной люминесценцией. Пример материалов для предпробойной электролюминесценции - ZnS:Cu, XnS:Mn, а для инжекционной - GaP:N, GAP:Zn, GaAs1-xPx, Alx Ga1-xAs

Свечение, сопровождающее химические реакции, проходящие в веществах, называют хемолюминесцен­цией. Пример такого явления  - свечение синего цве­та, возникающее при окислении желтого фосфора. Возбуждение химического лазера производится с по­мощью, например, реакции между фтором и водо­родом.

Чаще всего энергия (частота) возбуждающего из­лучения выше энергии (частоты) свечения, и тогда люминесценцию называют стоксовой. В противопо­ложном случае говорят об антистоксовой люминес­ценции.

Таблица 1. Виды, механизмы, материалы и применение люминесценции


2.Вынужденное излучение и усиление света

Все атомы и молекулы, все твердые тела и жидкости могут излучать свет с характерным для каждого из них набором длин волн. Причина в том, что энергия электронов в атоме, колебательная и вра­щательная энергия молекул, энергия электронных уровней в твердом теле может принимать только определенные дискретные наборы значений, харак­терные для каждого конкретного вида атомов, молекул и твердых тел. И когда электрон с энергией E2 переходит на уровень с энергией Е1 испускается квант света с длиной волны λ, обратно пропорцио­нальной разности этих энергий (E2 - Е1 = hv, где h  - постоянная Планка, v = 1/ λ).

Излучение света может происходить двумя спосо­бами. Первый способ показан на рис. 2а. Когда элек­троны в атоме, находившиеся на энергетическом уров­не E2, без постороннего влияния переходят на более низкий энергетический уровень E1, испустив световой квант, это спонтанное излучение. Если рядом нахо­дится атом, способный излучать свет с длиной волны, равной λ, или очень близкой к ней, то при поглощении этим атомом света с указанной длиной волны элек­трон переходит с уровня E1 на уровень E2. Такое явление называют резонансным поглощением (рис. 2б). Второй способ: электроны находятся на уровне E2 и атом подвергается воздействию света с длиной вол­ны, соответствующей резонансному поглощению. В этом случае атом испускает свет, по длине волны и фазе полностью соответствующий воздействию (рис. 2в). Такое явление называют вынужденным (индуцированным) излучением.

Рис. 2. Спонтанное излучение (а), резонансное поглощение (б)

Считают, что причины вынужденного излучения таковы. При отсутствии света волновая функция электрона (квадрат ее амплитуды выражает вероят­ность пребывания электрона на данном энергетиче­ском уровне)  может быть либо функцией состояния E1 либо функцией состояния E2 (рис. 3а), причем обе эти волновые функции взаимно независимы. Под действием электромагнитного поля света распределе­ние вероятности изменяется. Возникает суперпозиция состояний, описываемая линейной комбинацией ука­занных выше волновых функций. Иначе говоря, возникает смещение зарядов вдоль вектора напряженно­сти электрического поля падающего света, причем заряды колеблются около положения равновесия с той же фазой и частотой, что и световая волна. Атом становится диполем, излучающим свет с частотой и фазой падающего света.

Если собрать N свободных атомов, то получим N электронов и 2N энергетических уровней. Когда эта система находится в тепловом равновесии, то число электронов n1 на уровнях с энергией E1 больше, чем число электронов n2 на уровнях с энергией E2. И хотя такая система в состоянии излучать свет с длиной волны λ, однако резонансное поглощение преобладает и спонтанное излучение прекратится. Но если каким-либо способом сделать n2 больше, чем n1 (такое рас­пределение электронов называют инверсным, и так как, по определению абсолютной температуры, это состояние возможно только при температуре ниже абсолютного нуля, его называют состоянием с отри­цательной температурой), то вынужденное излучение будет преобладать над резонансным поглощением (рис. 4). Таким образом, падающий свет может со­провождаться вынужденным излучением с той же фазой и длиной волны, но интенсивностью во много раз выше. Это и есть усиление света. Повышение ин­тенсивности на единицу длины рабочего тела, выраженное в процентах, называют коэффициентом уси­ления. Свет можно усиливать с помощью неодимового стекла и подобных ему материалов.

Лазерная генерация  - это усиление вынужденного излучения с использованием оптического резонатора.

3. Синхронное орбитальное излучение

При искривлении траектории в магнитном поле ускорителей кольцевого типа, например синхро­трона, электроны излучают электромагнитные волны, называемые синхротронным орбитальным излучением В настоящее время часто используют термины синхротронное излучение и синхротронное свечение.

На рис. 7 приведена схема возникновения синхрон­ного излучения в устройстве кольцевого типа. Электроны, уже набравшие необходимую скорость в линейном ускорителе, влетают в кольцо с поворотными электромагнитами и движутся в нем. В тех местах, где магнитное поле искривляет траекторию электро­нов, ставятся выходные окна для излучения. Полученное излучение используют для различных целей. Такие сооружения есть в Японии: в Институте деления атомного ядра Токийского университета (0,4 ГэВ), в Институте деления и синтеза атомных ядер (0,6 ГэВ) и в институте физики высоких энергий (2,5 ГэВ).

Синхротронное излучение может занимать любую область в широком спектре длин волн - от инфракрасного, видимого и ультрафиолетового до рентгенов.

4. Хромизм

Хромизмом называют обратимые измене­ния цвета вещества под действием электрического поля, при облучении светом или пучком электронов. Если цвет изменяется под действием ультрафиолето­вых лучей и становится прежним под действием види­мого света – это фотохромизм. Если цвет изменяется при облучении пучком электронов – это катодный хромизм, а под действием электрического поля – электрохромизм.

Фотохромные материалы - это, например, хлори­ды щелочей (КС1 и др.), фториды типа СаF2 с присад­ками редкоземельных элементов или такие вещества, как SrTiO3, CaTiO3, TiO2, с присадками металлов переходных групп, а также некоторые органиче­ские вещества. Электрохромные материалы среди неорганики – хлориды щелочей, оксиды переходных металлов типа WO3 и MoO3, а среди органики – био­логические материалы и их производные, а также имидазол, дифталоцианины редкоземельных эле­ментов.

Рассмотрим для примера механизм фотохромного изменения окраски в кристалле СаF2:Sm, Eu. Как показано на рис. 5, атомы Sm и Eu имеют уровни возбуждения, различные по энергии ионизации. Когда кристалл находится в состоянии теплового равновесия, уровни Sm2+ и Eu3++ поглощают свет и в белом свете образец приобретает зеленую окраску. Если кристалл подвергнуть ультрафиолетовому облу­чению, имеющему энергию hw1 электроны с уровней Sm2+ переходят в зону проводимости и ион Sm2+ пре­вращается в Sm3+. Перешедший в зону проводимости электрон посредством тепловой релаксации опускает­ся до уровня Eu3+, и получается ион Eu2+. В резуль­тате пропадает окраска кристалла - он становится бесцветным. Но если теперь осветить этот же кри­сталл видимым светом с энергией hw2, соответствую­щей разности между энергиями уровня Eu2+ и зоны проводимости, переход электронов произойдет в об­ратном направлении и кристалл снова приобретет зеленую окраску.

Применение электрохромизма на примере ячейки с рабочим веществом WO3. Если приложить минус поля к электроду подложки, ячейка приобретет внутреннюю окраску с интенсивностью, пропорциональной прошедшему заряду. При пропу­скании тока в обратном направлении окраска пропа­дает. Механизм изменения окраски следующий. Под действием электрического поля разлагается материал катода.

Электроны инжектируются полем в слой WO3, примыкающий к электролиту, и восстанавливают ионы Н+, образующие на этом слое соединение HxWO3. На рис. 7 показана электрохромная ячейка на основе биологического вещества. Изменение цвета происходит из-за резонанса радикалов органических соединений (неспаренных электронов), возникающих в результате обратимых электрохимических реакций.

Явление фотохромизма используют для изготов­ления солнечных очков, меняющих густоту окраски в зависимости от силы солнечного света, при лазер­ной записи в оптическую память, в указателях на фотохромных пленках и в цветных дисплеях.

5. Фотопроводимость

Увеличение электропроводности полупро­водника или изолятора под действием света называют фотопроводимостью или внутренним фото­эффектом. Причина увеличения электропроводно­сти  - возбуждение светом носителей в валентной зоне и зоне проводимости. По механизму возбужде­ния носителей различают собственную фотопроводи­мость и несобственную фотопроводимость.

6. Классификация процессов люминесценции и их протекание

1 Люминесценцией называется излучение света телами, избыточное над тепловым при той же тем­пературе и имеющее длительность, значительно превышаю­щую периоды излучений в оптическом диапазоне спектра. Это излучение может быть вызвано бомбардировкой веще­ства электронами и другими заряженными частицами, пропусканием через вещество электрического тока (не-тепловое действие), освещением вещества видимым све­том, рентгеновскими и гамма лучами, а также некоторыми химическими реакциями в веществе.

2 В отличие от равновесного теплового излучения, люминесцентное излучение не имеет равновесного характера. Оно вызывается сравнительно небольшим числом атомов, молекул или ионов. Под действием источ­ника люминесценции они переходят в возбужденное со­стояние, и их последующее возвращение в нормальное или менее возбужденное состояние сопровождается испус­канием люминесцентного излучения. Длительность све­чения обусловлена длительностью возбужденного со­стояния, которое, помимо свойств люминесцирующего вещества, зависит от окружающей среды. Если возбуж­денное состояние метастабильно, то время пребывания в нем частицы может достигать 10"4 сек, что соответственно увеличивает и длительность люминесценции.

3 Люминесценция, сразу прекращающаяся после окон­чания действия возбудителя свечения, называется флуоресценцией. Люминесценция, сохраняющаяся длительное время после прекращения действия возбудителя свечения, называется фосфоресценцией.

4 В зависимости от характера элементарных процессов, приводящих к люминесцентному излучению, различают спонтанные, вынужденные и рекомбинационные процессы люминесценции, а также резонансную флуоресценцию. Резонансная флуоресценция наблюдается в парах атомов и состоит в спонтанном высвечивании с того же энергетического уровня, на котором оказался излучающий атом при поглощении энергии от источника люминесценции. При возбуждении резонансной флуо­ресценции светом имеет место резонансное излучение, переходящее в резонансное рассеяние при увеличении плотности паров. Спонтанная люминесценция состоит в том, что под действием источника люминесценции вна­чале происходит возбуждение атомов (молекул или ионов) на промежуточные возбужденные энергетические уровни. Далее с этих уровней происходят излучательные, а чаще безизлучательные переходы на уровни, с которых излучается люминесцентное свечение. Такой вид люминесценции наблюдается у сложных молекул в парах и растворах, у примесных центров в твердых телах. Наблюдается также при переходах из экситонных состояний.

Вынужденная (метастабилъная) люминесценция ха­рактерна тем, что под действием источника люминесценции происходит переход на метастабильный уровень, а затем следует переход на уровень люминесцентного излучения. Примером является фосфоресценция органических ве­ществ. Рекомбинационная люминесценция представляет собой рекомбинационное излучение, которое возникает при воссоединении тех частиц, которые были разделены при поглощении энергии от источника люминесценции (в газах  - радикалы или ионы, в кристаллах - электроны и дырки).

Рекомбинационная люминесценция может происходить на дефектных или примесных центрах (центры люми­несценции), когда дырки захватываются на основной уровень центра, а электроны - на его возбужденный уровень.

5 При электронном возбуждении люминесценции энергия бомбардирующих электронов передается электронам атомов (или молекул, ионов) и переводит их в воз­бужденное состояние. Передача энергии возможна лишь при условии, что кинетическая энергия бомбардирующего электрона

где Ея и Еъ - полная энергия атома (молекулы, иона) соответственно в нормальном и ближайшем к нему возбужденном состояниях. Атом (молекула, ион) возвращается из возбужденного состояния в нормальное, испустив квант света (фотон) частоты v:

При достаточных энергиях возбуждения возвращение атома (молекулы, иона) из возбужденного в нормальное состояние может происходить в несколько этапов через всё менее возбужденные состояния. Этому соот­ветствует испускание нескольких фотонов различных частот, причем суммарная их энергия равна энергии на­чального возбуждения.

6 Фотолюминесценция возбуждается светом видимой или ультрафиолетовой области спектра. Для сложных люминесцирующих веществ (сложные молекулы, конденсированные среды) спектральный состав фотолю­минесценции не зависит от длины волны света, вызыва­ющего люминесценцию, и подчиняется правилу Стокса.

Наблюдаются линейчатые, полосатые и сплошные спектры фотолюминесценции. Ее характер существенно зависит от агрегатного состояния вещества. У ряда кристаллофосфоров с увеличением частоты возбуждающего света квантовый выход растет при условии , где  - ширина запрещенной зоны (размножение фотонов при фотолюминесценции).

7 Электролюминесценция в газах вызывается электрическим разрядом, в котором энергия возбуждения сооб­щается молекулам газа механизмом электронного или ионного удара. Возбужденное состояние при электролюминесценции всегда вызывается прохожде­нием какого-либо тока и, таким образом, связано с нали­чием электрического поля. Электролюминесценция в твердых телах наблюдается, в частности, на p-n переходе в полупроводниках.

8° Хемилюминесценция сопровождает некоторые экзотермические химические реакции. Химические превращения в веществе сопровождаются перестройкой внеш­них электронных оболочек атомов. Излучение света при­водит к образованию химического соединения с более устойчивой в данном окружении и при данных условиях электронной конфигурацией. Хемилюминесценция часто сопровождает процессы окисления с обра­зованием более устойчивых продуктов сгорания.

Свечение при хемилюминесценции вызывается молекулами (атомами, ионами) продуктов реакции в возбужденных электронных, колебательных и вращательных состояниях. Примерами хемилюминесценции являются свечение высокотемпературных и низкотемпературных пламен, свечение при рекомбинации перекисных радикалов в цепном окислении жидких углеводородов.

7. Закономерности люминесценции

1 ° Правило Стокса: длина волны фотолюминесценции, как правило, больше, чем длина волны возбуждающего света. В более общей формулировке: максимум спектра люминесценции смещен в длинноволновую сторону от максимума спектра поглощения. С квантовой точки зрения правило Стокса означает, что энергия Ну кванта воз­буждающего света частично расходуется на неоптические процессы:

 т.е.  или

где W - энергия, затраченная на различные процессы, кроме фотолюминесценции.

2° В некоторых случаях фотолюминесцентное излу­чение имеет в своем спектре длины волн, меньшие длины волны возбуждающего света (антистоксово излучение). Это явление объясняется тем, что к энергии возбуждаю­щего фотона добавляется энергия теплового движения атомов, молекул или ионов люминофора:

где а - коэффициент, зависящий от природы люминофора, к - постоянная Больцмана, Т - абсолютная темпе­ратура люминофора. Антистоксово излучение проявляет­ся все отчетливее по мере повышения температуры люми­нофора.

3° Отношение энергии люминесценции к энергии, поглощенной в стационарных условиях люминофором от источника, возбуждающего люминесценцию, называется энергетическим выходом люминесценции.

Согласно закону Вавилова квантовый выход фотолю­минесценции не зависит от длины волны возбуждающего света в стоксовой области (vвозб > vлюм) и Резко падает в области антистоксова излучения (vвозб < vлюм).

Величины квантового и энергетического выходов силь­но зависят от природы люминофора и внешних условий. Это связано с возможностью без излучательных переходов частиц из возбужденного в нормальное состояние (туше­ние люминесценции). Основную роль в процессах тушения играют столкновения второго рода, в результате ко­торых энергия возбуждения переходит во внутреннюю энергию теплового движения без излучения. Имеет место также резкое уменьшение интенсивности флуоресцен­ции при чрезмерно большой концентрации молекул люминесцирующего        вещества (концентрационное тушение). В этом случае из-за сильной связи между частицами невозможно образование центров люминес­ценции.

4° Интенсивность свечения для спонтанной и метастабильной люминесценции изменяется с течением времени по экспоненциальному закону:

где It – интенсивность свечения в момент времени t, I0  - интенсивность свечения в момент прекращения воз­буждения люминесценции, r - средняя продолжитель­ность возбужденного состояния атомов или молекул люминофора. Величина r имеет обычно порядок 10-9 – 10-8 сек. В отсутствие тушащих процессов r слабо за­висит от условий и определяется в основном внутри­молекулярными процессами.

5° Интенсивность рекомбинационного люминесцентного свечения изменяется с течением времени по гиперболическому закону:

где а и n - постоянные;

 величина а лежит в пределах от долей сек-1 до многих тысяч сек-1; , где I0 - интенсивность рекомбинационной люминесценции в мо­мент ее возбуждения; n заключено в пределах от 1 до 2.

ЛИТЕРАТУРА

1. Мирошников М.М. Теоретические основы оптико-электронных приборов: учебное пособие для приборостроительных вузов. -- 2-е издание, перераб. и доп. -Спб.: Машиностроение,2003 -- 696 с.

2. Порфирьев Л.Ф. Теория оптико-электронных приборов и систем: учебное пособие. - Спб.: Машиностроение,2003 -- 272 с.

3. Кноль М., Эйхмейер И. Техническая электроника, т. 1. Физические основы электроники. Вакуумная техника. -М.: Энергия, 2001.

Похожие работы на - Люминисценция

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!