Ртутно-цинковые элементы

  • Вид работы:
    Реферат
  • Предмет:
    Химия
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    54,80 kb
  • Опубликовано:
    2009-01-12
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Ртутно-цинковые элементы

Министерство Образования

Российской Федерации

Камский Государственный

Политехнический Институт

Кафедра Э и Э

Реферат.

на тему: Ртутно-цинковые аккумуляторы.

Выполнил ст. гр. 2410

Мансуров. Р.

Проверил профессор

Обухов С. Г.

Набережные Челны 2003 г.

Содержание. стр.

Введение__________________________________________3

Ртутно-цинковые аккумуляторы______________________4

Теория____________________________________________4

Устройство дискового элемента_____________________5

Характеристики____________________________________7

Перезаряжаемые элементы___________________________9

Технические характеристики_______________________10

ХИТ производственного назначения ртутно-цинковой системы (Hg-
Zn)______________________________________12

Ртутно-цинковые элементы и батареи________________13

Список используемой литературы____________________14

Введение.

Ртутно-цинковые элементы питания используются для автономного питания в контрольно-измерительных приборах, дозиметрической аппаратуре, регистрирующих измерителях напряжения, слуховых аппаратах, часах, системах противопожарной сигнализации, геофизических устройствах.
Особенности:

. стабильное напряжение;

. миниатюрность;

. высокие разрядные токи;

Источникам данной системы не требуется время для "отдыха", элементы прекрасно работают и в прерывистом и в непрерывистом режиме.

Кроме того, элементы обладают устойчивостью к коррозии и к высокой относительной влажности в процессе длительного срока хранения.

Электрохимическая система: цинк-окись ртути-гидрат окиси натрия. Имеют высокие энергетические показатели, характеризуются практически плоской кривой разряда, но работоспособны только при положительных температурах
(0...50°C). При малых токах разряда и стабильной температуре напряжение на элементе остается почти неизменным. Практически не имеют газовыделения. Из- за наличия ртути экологически вредны и к применению не рекомендуются. Из- за "ползучести" электролита могут иметь небольшой беловатый налёт соли
(карбоната) на уплотнительном кольце.

Основные области использования: фотоэкспонометры, фотоаппараты, измерительные приборы, слуховые аппараты, электронные наручные часы (как правило, устаревшие модели).

Срок хранения до начала эксплуатации не более 1...1,5 лет.

Ртутно-цинковые аккумуляторы.

Среди щелочных первичных элементов с цинковым анодом ртутно-цинковые элементы (РЦЭ) в некотором роде противоположны медно-цинковым. Они выпускаются в виде герметичных элементов малой емкости - от 0,05 до 15 А·ч.
В них используется ограниченный объем электролита [около 1 мл/(А·ч)], находящегося в пористой матрице; вследствие этого цинковый электрод работает только на вторичном процессе.

Современные РЦЭ были разработаны С. Рубеном в США в начале 40-х годов нашего века. Благодаря высокой эффективности предложенной им конструкции
«пуговичных» (дисковых) элементов широкое производство таких элементов было налажено в США еще в годы второй мировой войны, а в, других странах—после войны.

Теория.

Основу РЦЭ составляет электрохимическая система Zn|KOH|HgO. Конечным продуктов разряда является оксид цинка. Разряд оксида ртути описывается реакцией

HgO+Н20+2е-(Hg+2ОН-.

В начале разряда на потенциальной кривой Е+-? наблюдается кратковременный спад потенциала, что вызвано кристаллизационной поляризацией при образовании первых микро капель ртути. В дальнейшем катодный потенциал сохраняет стабильность почти до конца разряда, поскольку поляризация мала, а омические потери напряжения в активной массе по мере перехода оксида ртути в металлическую ртуть снижаются.

Элемент должен сохранять герметичность в течение нескольких лет, поэтому скорость саморазряда должна быть настолько малой, чтобы не создавалось избыточное давление, способное разгерметизировать элемент. Для снижения скорости саморазряда цинкового анода принимают следующие меры: используют особо чистый цинк; с целью резкого повышения водородного перенапряжения цинк обильно амальгамируют; подавляют выделение водорода на поверхности других металлов, контактирующих с цинковым анодом; в качестве электролита используют раствор КОН высокой концентрации, который предварительно насыщают цинкатом калия; структуру активной массы отрицательного электрода создают достаточно грубодисперсной, для этого применяют цинковые опилки или цинковый порошок крупных фракций.

Устройство дискового элемента.

Рис.1. Устройство ртутно-цинкового элемента: 1 - крышка (отрицательный полюс); 2 - цинковый электрод; 3 - резиновое уплотнительное кольцо; 4 - бумага, пропитанная электролитом; 5 - ртутний электрод; 6 - корпус
(положительный полюс).

Положительный электрод представляет собой активную массу 5, впрессованную в стальной корпус 6. Активная масса состоит из тонкокристаллического красного оксида ртути, в который добавлены графит и дубитель БНФ. Малозольный мелкомолотый графит повышенной чистоты служит токопроводящей добавкой. Диспергатор дубитель БНФ как органическое поверхностно-активное вещество адсорбируется на ртути, препятствуя образованию крупных капель металла. В результате диспергированная ртуть равномерно распределяется в объеме электрода, повышая его электрическую проводимость и обеспечивая высокий коэффициент использования. Кроме того, крупные капли ртути, попав в межэлектродное пространство, способны вызвать короткое замыкание и вывести элемент из строя.

Корпус, в который впрессована активная оксидно-ртутная масса, служит одновременно каркасом электрода и положительным токоотводом. Он отштампован из стальной ленты толщиной 0.3—0.4 мм и защищен от коррозии электролитическим никелем.

Отрицательным электродом является стальная крышка 1, в которую запрессована активная масса 2—цинковые опилки, благодаря чему электрод обладает необходимой прочностью. Для борьбы с саморазрядом цинк амальгамируют, содержание ртути в активной массе достигает 10%. Как и корпус, крышка кроме своего прямого назначения выполняет функции каркаса электрода и токоотвода. Важную роль играет компактное и достаточно толстое
(около 20 мкм) оловянное покрытие, которое служит для защиты стальной поверхности крышки от коррозии, и препятствует саморазряду цинка, поскольку перенапряжение выделения водорода на железе гораздо ниже, чем на амальгамированном олове.

Не смотря на то, что оксид ртути значительно дороже чем цинка, оксиднортутная активная масса берется в избытке, и по этому емкость элемента лимитируется цинковым электродом. Если бы емкость ограничивалось положительным электродом, то вслед за зарядом HgO на никелированной поверхности корпуса начался бы процесс разрядки молекул воды с образованием водорода. Вероятность разрушения элемента и вытекания ртути при этом весьма велика.

В РЦ элементах в качестве электролита используют раствор КОН высокой степени чистоты, в который предварительно вводят оксид цинка для образования цинката калия. Иногда в раствор добавляют диоксид кремния, что замедляет старение электролита, препятствует преждевременному распадению тетрагидроксоцинката. Электролит пропитывает электродные активные массы и сепаратор-диафрагму. Диафрагма 9 состоит из 2-4 слоев щелочестойкой хлопковой бумаги, обладающей высокой пористостью и гидрофильностью, впитывающей до восьмикратного объема электролита, плотно заполняя все межэлектродное пространство.

Герметизация элемента осуществляется с помощью резинового или пластмассового кольца 3, которое является одновременно и изолятором между электродами. Давление водорода из-за малого самозаряда повышается медленно, однако и оно способно со временем разгерметировать элемент. При завальцовке корпуса обеспечивают такое сжатие резины, чтобы исключить вытекание электролита и в то же время дать возможность водороду медленно диффундировать в атмосферу.

Ртутно-цинковые элементы используют не только индивидуально, но и в составе батарей. Для этого их комплектуют в секции по 2-10 шт., соединяя последовательно с помощью никелевой ленты. Корпусом секции служит трубка из многослойной полимерной пленки.

Характеристики.

Габариты, масса и емкость наиболее распространенных РЦ элементов согласно ГОСТ 12537-76 представлены в табл.1.

Таблица 1
|Обозначение |Размеры, мм |Масса, г |Номинальная емкость,|
|элемента | | |А.ч |
| |диаметр |высота | | |
|РЦ53 |15,6 |6,3 |4,6 |0,3 |
|РЦ55 |15,6 |12,5 |9,5 |0,55 |
|РЦ63 |21,0 |7,4 |11,0 |0,65 |
|РЦ65 |21,0 |13,0 |18,1 |1,1 |
|РЦ73 |25,0 |8,4 |17,2 |1,1 |
|РЦ75 |25,5 |13,5 |27,3 |1,8 |
|РЦ83 |30,1 |9,4 |28,2 |1,8 |
|РЦ85 |30,1 |14,0 |39,5 |2,8 |

Номинальная емкость РЦ элементов равна емкости при I100 мА и 20єС или
(разрядное напряжения в 1,0 В). При 50єС емкость близка к максимально допустимой и коэффициент использования цинка достигает 100%, при 20єС – к
90% и при 0єС – к 30%. В конце двух-, трехгодичного срока хранения емкость должна быть не ниже 0.9 СНОМ.

Напряжение разомкнутой цепи РЦ элементов составляет 1,35 В при 250С и при снижении температуры уменьшается незначительно.

Типичные разрядные кривые ртутно-цинковых элементов представлены на рис.2. Элементы отличаются хорошей стабильностью напряжения в течении большей части разряда , что для ряда областей применения является существенным фактором. Разряд ведется до конечного напряжения 0,9-1,1 В (в зависимости от тока); дальше напряжение резко падает. В элементах используются сравнительно толстые электроды с большой емкостью на единицу поверхности. Поэтому заметное снижение емкости начинается уже при разряде токами, соответствующими jp>0.02(при плотностях тока больше 100А/м2). В связи с этим элементы предназначены для разряда в основном малыми и средними токами(jp=


Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!