Экология и окружающая природная среда

  • Вид работы:
    Книга / Учебник
  • Предмет:
    Экология
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    53 Кб
  • Опубликовано:
    2015-04-03
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Экология и окружающая природная среда

Тема 1. Экология и окружающая природная среда

. Понятие о научной дисциплине "Экология"

Термин «экология» (от гр. oikos - дом, родина и logos - наука) предложил немецкий биолог Э.Геккель (1866 г.), это наука об отношениях растительного мира, животных организмов, человека и образуемых ими сообществ между собой и окружающей средой.

Исходя из определения, что экология - совокупность научных и практических проблем взаимоотношений человека и природы, ее можно разделить на экологию общую и прикладную.

К общей экологии следует отнести разделы, изучающие антропосное воздействие на живое вещество (биоэкология) и биокосное вещество (геоэкология) и их ответные реакции на это воздействие.

В биоэкологии при делении по уровню организации живого можно выделить молекулярную экологию, морфологическую экологию (клеток и тканей) и аутоэкологию, изучающую живое вещество на уровне особи. При делении по типу структурирования живого в биологической системе биоэкологию можно разделить на экологию многоклеточных организмов (грибов, растений и животных) и одноклеточных (микроорганизмов).

К предмету геоэкологии относятся проблемы взаимодействия в системе антропос - биокосное вещество. Принимая за признак деления агрегатное состояние этого вещества, получим, например, деление геоэкологии на экологию суши, гидросферы и атмосферы.

К области прикладной экологии необходимо отнести следующие вопросы: выработка общих решений, прогнозов и рекомендаций, касающихся путей выхода из глобальных кризисных ситуаций экологического характера; разработка конкретных управленческих, юридических, технологических и экономических решений, улучшающих экологические параметры развития общества. Исходя из сказанного, прикладную экологию можно разделить на экологию глобальных кризисных проблем и экологию природопользования.

К глобальным кризисным относятся, например, проблемы парникового эффекта и озонового слоя Земли. Экологию природопользования составляют экология промышленная, сельскохозяйственная, промысловая, быта и т.д.

. Земля - как планета Солнечной системы. Атмосфера. Гидросфера. Литосфера. Биосфера

Астрономы предполагают, что Земля вместе с другими планетами возникла около 4,6 млрд. лет назад из одного сжимающегося газопылевого облака, из которого образовалось и Солнце. В соответствии с современными научными взглядами Земля представлена тремя слоями (сферами).

Первый слой - это атмосфера, простирающаяся в Космос. Современная атмосфера планеты по составу относится к азотно-кислородному типу и этим качественно разнится от газовых оболочек всех известных ныне небесных тел, включая планеты Солнечной системы. Атмосфера подразделяется на несколько зон: тропосферу, стратосферу, мезосферу, ионосферу и экзосферу.

. Тропосфера - нижняя часть атмосферы. В ней сосредоточено более 80% всей массы воздуха. Ее высота определяется интенсивностью вертикальных (восходящих и нисходящих) потоков воздуха, вызванных нагреванием земной поверхности (на экваторе до высоты 16-18 км, в умеренных широтах 10-11км, на полюсах до 8 км). Тропосфера характеризуется понижением температуры воздуха с высотой, в среднем на 0,6 К через каждые 100 м.

. Стратосфера располагается выше тропосферы, до высоты 50-55 км, и отличается повышением температуры у ее верхней границы. Это связано с наличием здесь пояса озона, интенсивно поглощающего световое излучение ультрафиолетового спектра. Одновременно озоновый слой защищает поверхность Земли от губительного воздействия этой части излучения Солнца.

. Мезосфера простирается до высоты 80 км. В ней наблюдается резкое понижение температуры (до -75-90 °С) и образование серебристых облаков, состоящих из ледяных кристаллов.

. Ионосфера (термосфера) достигает высоты 800 км. Для нее характерно значительное повышение температуры (до 1000 °С и более). Под прямым воздействием ультрафиолетового излучения газ здесь присутствует в ионизированном состоянии, что способствует многократному отражению радиоволн, обеспечивающих дальнюю радиосвязь на Земле.

. Экзосфера находится на высоте от 800 до 2000-3000 км и имеет температуру свыше 2000 °С. Скорость движения газов в ней приближается к критической (11,2 км/с). Они представлены в основном водородом и гелием, образующими вокруг Земли корону, простирающуюся до высоты 20 тыс. км.

Вторая сфера - литосфера - верхняя твердая оболочка Земли, включает земную кору и верхнюю мантию. Мощность литосферы - 50-100 км, в том числе земной коры - до 75 км на континентах и 10 км под океаном. Исследована лишь верхняя часть земной коры (около 5% ее объема). На 47-49% она состоит из кислорода, на 27-28% из кремния, на 8% из алюминия. Они составляют основу песчано-глинистых минералов, доля которых в коре достигает 80-85%. Эти же элементы, а также железо, кальций, натрий, калий, магний и титан образуют 99,6% массы земной коры. На долю остальных 105 известных химических элементов приходится только 0,4%. Жизнь в литосфере концентрируется только в поверхностном слое земной коры, то есть в почве. Почва - это верхние наружные уровни горных пород, измененные под влиянием воды, воздуха и деятельности живых организмов, это смесь остатков живых организмов и косных (неорганических) веществ, обладающая таким свойством как плодородие. Мощность почвы невелика: от 30 см в тундре до 160 см - в западных черноземах.

Следующий за корой слой Земли толщиной около 2880 км известен как мантия. Предполагают, что она в основном сложена плотными силикатными породами. Третий слой толщиной порядка 3500 км называют ядром. По-видимому, оно состоит из внешнего жидкого слоя толщиной около 2080 км и твердой центральной части из никеля и железа при температуре 6400 К.

Большую часть поверхности нашей планеты занимает третья сфера или гидросфера, включающая все типы водоемов. В наиболее общем виде гидросферу делят на Мировой океан, континентальные и подземные воды.

В Мировом океане сосредоточена основная масса воды. Его средняя глубина составляет более 4000 м, он занимает площадь, равную 71% поверхности земного шара, и отличается высокой соленостью. Континентальные водоемы покрывают около 5% площади Земли. Из них на долю поверхностных вод (озера, реки, болота) приходится весьма малая часть (0,2%), ледников - 1,7%.

В верхней части земной коры находятся обширные запасы подземных вод, которые составляют около 4% общего объема гидросферы. Пресные воды залегают до глубины 150-200 м, ниже они переходят в солоноватые. Подземные воды включают в себя также лед в толще многолетней мерзлоты.

Свободные воды гидросферы по вертикали делятся на две зоны. Верхняя зона - эуфотическая, определяется глубиной проникновения солнечного света (в среднем 200 м). В этой зоне протекает деятельность фотосинтезирующих организмов (растений, некоторых бактерий). В нижних слоях, куда не проникает солнечный свет, - афотической зоне - обитают живые организмы, использующие готовые органические вещества, синтезированные организмами эуфотической зоны. Весь планетный запас воды достигает 1450 млн. км3.

Гидросфера тесно связана с литосферой (подземные воды), атмосферой (пары воды) и живым веществом, в состав которого вода входит в качестве обязательного компонента. Она выступает в роли универсального растворителя практически всех веществ, взаимодействует со многими из них. Это взаимодействие обеспечивает обмен веществ, например, между сушей и океаном, организмами и окружающей средой.

Кроме названных, выделяют еще одну весьма своеобразную оболочку Земли, которую называют биосферой, это область распространения жизни на Земле, охватывающая несколько населенных организмами геосфер: тропосферу, гидросферу и часть литосферы (до 3 км). Биосфера представляет собой совокупность частей земных оболочек, которая заселена живыми организмами, находится под их воздействием и занята продуктами их жизнедеятельности.

В соответствии с учением В.И. Вернадского, биосферу можно разделить на три подсферы:

. Аэробиосфера населена аэробионтами, основой жизни которых является влага воздуха. В аэробиосфере выделяют слой тропобиосферы - от вершин деревьев до высоты наиболее частого расположения кучевых облаков. Выше тропобиосферы лежит слой альтобиосферы, где концентрация микроорганизмов очень небольшая. Над слоем альтобиосферы находится пространство, куда микроорганизмы проникают случайно, и в этом слое они не размножаются - парабиосфера.

. В гидробиосфере выделяют три слоя в зависимости от интенсивности проникающего солнечного света:

фотосфера - относительно ярко освещенный слой;

дисфотосфера - проникает до 1% солнечного света;

афтосфера - слой абсолютной темноты, где фотосинтез невозможен.

. Геобиосфера включает:

террабиосферу - область жизни на поверхности суши, которая подразделяется на фитосферу (от поверхности Земли до верхушек деревьев) и педосферу (почвы и лежащие под ними подпочвы);

литобиосферу - жизнь в глубинах Земли в порах горных пород. Жизнь в толще литосферы существует в основном в подземных водах.

Биосфера состоит из нескольких типов веществ:

1.       живое вещество - совокупность всех живых организмов на планете (растений, животных, микроорганизмов);

2.       биогенное вещество - вещество, создаваемое и перерабатываемое живыми организмами на протяжении геологической истории (каменный уголь, битумы, известняки, нефть);

3.       косное вещество (твердое, жидкое, газообразное) - вещество неорганического происхождения, т.е. образуемое в процессах, в которых живое вещество не участвует;

.         биокосное вещество - вещество, которое создается одновременно в процессах жизнедеятельности живых организмов и в процессах неорганической природы, причем организмы играют ведущую роль (сюда относится почти вся вода биосферы, почвы, илы);

.         вещество, находящееся в процессе радиоактивного распада (радиоактивные элементы);

.         рассеянные атомы, непрерывно образующиеся из различных видов земного вещества под влиянием космического излучения;

.         вещество космического происхождения (космическая пыль, обломки метеоритов и т.д.).

К основным признакам живого относятся:

. Единство химического состава. В живых организмах 98% химического состава приходится на 6 элементов (макробиогены): около 60% кислорода, около 20% углерода, около 10% водорода, 3% азота, 3,5% кальция и 1% фосфора.

. Живые системы содержат совокупность сложных биополимеров (белки, нуклеиновые кислоты, ферменты, витамины и др.).

. Это открытые системы, то есть системы, которые не могут существовать без постоянного притока энергии в виде пищи, света и т.п. (используют внешние источники энергии). Все живые системы способны к обмену веществами с окружающей средой, поглощая из нее вещества, необходимые для питания, и выделяя во внешнюю среду продукты жизнедеятельности.

Через живые организмы проходят потоки энергии и веществ, в результате чего в системах осуществляется обмен веществ - метаболизм (от греч. - превращение.).

Метаболизм включает процессы анаболизма (синтез веществ) и катаболизма (распад сложных веществ). В процессах анаболизма под действием ферментов происходит синтез сложных веществ из более простых с накоплением энергии (фотосинтез).

При катаболизме происходит высвобождение энергии, заключенной в химических связях крупных органических молекул, и накопление ее в форме богатых энергией фосфатных связей аденозинтрифосфорной кислоты (дыхание, брожение). Конечными продуктами катаболизма являются углекислый газ, вода, аммиак и т.д. Обмен веществ обеспечивает постоянство химического состава внутренней среды организма (гомеостаз) и, как следствие, постоянство его функционирования в непрерывно меняющихся условиях окружающей среды.

. Живые системы - высокоорганизованные и упорядоченные системы, они устойчивы при жизни и быстро разлагаются после смерти.

. Жизнь на Земле проявляется в виде дискретных форм. Дискретность живого означает, что отдельный организм или сообщество организмов состоят из отдельных изолированных, но тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство.

. Живые системы - самовоспроизводящиеся системы. В основе самовоспроизведения лежит образование новых молекул и структур по генетической программе, которая заложена в ДНК клеток.

Наследственность - способность организмов передавать свои признаки, свойства и способности развития из поколения в поколение.

. Живые системы - самоуправляющиеся, саморегулирующиеся и самоорганизующиеся системы.

Саморегуляция - свойство живых систем автоматически устанавливать и поддерживать на определенном уровне те или иные показатели системы (рН, температуру, содержание воды, углекислого газа и т.д.), т.е. обеспечивать гомеостаз.

Самоорганизация - свойство живой системы приспосабливаться к изменяющимся условиям внешней среды за счет изменения структуры своей системы управления. Это изменение происходит в процессе переработки поступающей из внешней среды информации, т.е. живые системы самоуправляющиеся.

. Живые системы способны к росту и развитию. Рост - увеличение в размерах и массе с сохранением общих черт и качеств системы. Рост живой системы сопровождается развитием, то есть возникновением новых качеств и черт.

. Историческое развитие, то есть необратимое и направленное развитие живой природы, сопровождается образованием новых видов и прогрессивным усложнением формы жизни от оплодотворения до смерти. Историческое развитие живых систем связано с их изменчивостью.

Изменчивость - свойство, противоположное наследственности и связанное с приобретением организмом новых свойств и признаков под воздействием внешних факторов в результате самоуправления.

. Живым организмам характерна ритмичность, то есть периодические изменения интенсивности физиологических функций с различными периодами колебаний (суточные ритмы сна и бодрствования, сезонные ритмы активности и спячки некоторых млекопитающих).

. Живая система - динамическая система, которая активно воспринимает и преобразует молекулярную информацию с целью самосохранения.

Взаимодействие живых организмов с компонентами биосферы (литосферой, атмосферой, гидросферой) происходит путем обмена, питания, дыхания и выделения продуктов метаболизма. Все организмы неодинаковы с точки зрения накопления ими веществ и энергии. Растения используют солнечную энергию, осуществляя процесс фотосинтеза, а животные потребляют органические вещества, созданные растениями - фотосинтетиками. Поэтому все живые организмы по способу питания можно разделить на два класса: автотрофные и гетеротрофные организмы.

Автотрофные, т.е. самопитающиеся, - поглощают энергию Солнца и вещества из окружающей среды, создают органические вещества из неорганических. К ним относятся зеленые растения, водоросли и некоторые бактерии. По источнику энергии автотрофы подразделяют:

. Фотоавтотрофы осуществляют процесс превращения воды и углекислого газа в сахара с выделением в качестве побочного продукта - кислорода (фотосинтез).

. Хемоавтотрофы для синтеза органических веществ используют химическую энергию (серо- и железобактерии - при окислении соединений серы и железа), они играют значительную роль только в экосистемах подземных вод.

Гетеротрофные организмы, т.е. питаемые другими, - используют в качестве пищи готовые органические вещества, т.е. они питаются другими животными организмами, растениями или их плодами. К ним относятся травоядные, хищники и человек.

Выделяют иногда еще миксотрофные организмы, которые в зависимости от условий внешней среды могут сочетать автотрофный и гетеротрофный режим питания. Например, водные одноклеточные организмы при хорошей освещенности питаются автотрофно, а в темноте переходят к гетеротрофному способу.

Живое вещество также подразделяется:

. Однородное - биомасса организмов одного вида или рода.

. Разнородное - биомасса особей разных видов, населяющих данную экосистему.

. Соматическое вещество - организмы, уже не способные воспроизводить себе подобных.

Живые системы обладают совокупностью следующих функций:

. Питание. Пища нужна всем живым системам как источник энергии и веществ, необходимых для строительства органов (процесс анаболизма).

. Дыхание - процесс катаболизма.

. Выделение - выведение из организма конечных продуктов обмена.

. Раздражимость - реагирование на изменение внешней и внутренней среды (голод, жажда, холод). Реакция многоклеточных животных на раздражение осуществляется с участием нервной системы и называется рефлексом.

. Размножение.

. Рост - в отличие от кристаллов, растущих снаружи, живые системы растут как бы изнутри, включая питательные вещества в структуру своего тела.

. Подвижность - перемещение в пространстве всей системы и движение внутри системы (кровь у животных).

К свойствам живого вещества относят:

. Способность быстро осваивать все свободное пространство (всюдность жизни).

. Способность двигаться не только пассивно (под действием гравитации), но и активно (против течения воды, силы тяжести и т.д.).

. Устойчивость при жизни и быстрое разложение после смерти.

. Высокая приспособительная способность (адаптация) к разным условиям и в связи с этим освоение не только всех сред жизни (водной, воздушной, почвенной), но и трудных по физико-химическим параметрам условий (температурным, радиационным и др.).

. Очень большая скорость протекания реакций, она на несколько порядков выше, чем в неживом веществе.

. Высокая скорость обновления живого вещества (в среднем для биосферы 8 лет, при этом для суши - 14 лет, а для океана - 33 дня).

К основным свойствам биосферы относят:

. Биосфера способна аккумулировать солнечную энергию и превращать ее в энергию химических связей органических соединений.

. Биосфера - целостная система, она обусловлена непрерывным обменом веществ и энергии между ее составными частями.

. Биосфера - централизованная система, центром ее являются живые организмы.

. Биосфера - открытая система. Ее существование невозможно без постоянного притока солнечной энергии.

. Биосфера - саморегулирующая система, для которой характерна организованность, способность поддерживать исходное состояние, т.е. после различных нарушений возвращаться в первоначальное состояние (это свойство называется гомеостазом).

. Биосфера проявляет ритмичность - повторяемость во времени тех или иных явлений. В природе существуют ритмы разной продолжительности. Основные из них - суточные, годовые, внутривековые и сверхвековые.

. Биосфера обладает горизонтальной зональностью и высокой поясностью.

Горизонтальная зональность - закономерное изменение природной среды по направлению от экватора к полюсам. Зональность обусловлена неодинаковым количеством поступающей на разные широты тепла в связи шарообразной формой Земли. Наиболее крупные зональные подразделения - географические пояса.

. Биосфера - глобальная многоэлементная система, характеризующаяся большим разнообразием. Это разнообразие обусловлено совокупностью большого количества экосистем со свойственным им видовым разнообразием.

. Важнейшее свойство биосферы - обеспечение круговорота веществ и неисчерпаемости отдельных химических элементов и их соединений. Нарушение или тем более разрушение природных круговоротов химических элементов может привести к коллапсу биосферы.

. Биосфера - живая открытая система. Она обменивается энергией и веществом с внешним миром. Применительно к биосфере внешний мир - это космическое пространство.

К биосфере относят, прежде всего, те участки, где есть условия для выживания и размножения живых существ - это поле существования жизни. К ним прилегают территории, в которых живые организмы лишь выживают, они не могут размножаться. Эти территории называются полем устойчивости жизни.

Поле существования жизни определяется:

1)  достаточным количеством кислорода, углекислого газа и воды;

2)       благоприятной температурой;

)         прожиточным минимумом минеральных веществ.

Наибольшая концентрация жизни в биосфере наблюдается на границах соприкосновения земных оболочек: атмосферы и литосферы (поверхность суши), атмосферы и гидросферы (поверхность океана), гидросферы и литосферы (дно океана), и особенно на границе трех оболочек - атмосферы, гидросферы и литосферы (прибрежные зоны). Эти места наибольшей концентрации жизни В.И. Вернадский назвал пленками жизни. Вверх и вниз от этих поверхностей концентрация живой материи уменьшается.

Существует пять интегральных биохимических функций биосферы, и в том числе, живого вещества:

1. Энергетическая функция выполняется в основном растениями. В основе этой функции лежит процесс фотосинтеза, т.е. аккумулирование зелеными растениями солнечной энергии и дальнейшее ее перераспределение между остальными компонентами биосферы.

. Средообразующая функция состоит в трансформации химических параметров среды в условия, благоприятные для существования организмов. Средообразующая функция включает:

- Газовая функция обеспечивает газовый состав биосферы в процессах миграции и превращения газов, большая часть которых имеет биогенное происхождение. Выделяется несколько газовых функций: кислородно-углекислотная (процесс фотосинтеза), углекислотная (процесс дыхания), азотная (выделение азота азотденитрофицирующими бактериями).

- Деструктивная функция обуславливает процессы, связанные с разложением мертвой органики, с химическим разрушением горных пород и вовлечением образовавшихся веществ в биотический круговорот. В результате этого образуются биокосные и биогенные вещества, происходит минерализация органики, т.е. превращение ее в косное вещество.

Концентрационная функция заключается в избирательном извлечении и накоплении живыми организмами биогенных элементов окружающей среды, обуславливая большую разницу в составе живого и косного вещества планеты. Благодаря этой функции живые организмы могут служить для человека источником, как полезных веществ (витаминов, аминокислот), так и опасных для здоровья (тяжелых металлов, радиоактивных элементов и ядохимикатов).

Окислительно-восстановительная функция живых организмов проявляется в окислении с участием бактерий, грибов всех бедных кислородом соединений в почве, коре выветривания и гидросфере. В результате восстановительной деятельности анаэробных микроорганизмов в заболоченных почвах, практически лишенных кислорода, образуются окисленные формы железа.

. Транспортная функция - перенос вещества и энергии в результате движения живых организмов. Часто такой перенос осуществляется на громадное расстояние, например при перелете птиц.

. Информационная функция. Живые организмы способны воспринимать, хранить и перерабатывать молекулярную информацию и передавать ее последующим поколениям.

. Рассеивающая функция - рассеивание веществ в окружающей среде. Она проявляется через трофическую и транспортную деятельность организмов, например рассеивание токсичных веществ, рассеивание веществ при выделении организмами экскрементов.

Условием существования и развития биосферы является круговорот биологически важных веществ. Солнечная энергия обеспечивает на Земле два круговорота веществ: геологический, или большой, и малый, биологический.

Геологический круговорот четко проявляется на примере круговорота воды и циркуляции атмосферы. По оценкам, до половины поступающей от Солнца энергии расходуется на испарение воды. Ее испарение с поверхности Земли компенсируется выпадением осадков. При этом из Океана воды испаряется больше, чем возвращается с осадками, а на суше происходит обратное - осадков выпадает больше, чем испаряется воды. Излишки ее стекают в реки и озера, а оттуда - снова в Океан. Наряду с водой в геологическом круговороте с одного места в другое переносятся и минеральные вещества.

С появлением живого начала на базе геологического, или абиотического, круговорота возникает биологический круговорот. Под биологическим круговоротом понимается поступление химических элементов из почвы и атмосферы в живые организмы, превращение в них поступающих элементов в новые сложные соединения с последующим их возвращением в почву и атмосферу, а также воду.

С момента появления на Земле человека начинается формирование новой геологической оболочки - ноосферы (от греч. - разум), то есть сферы разума. Это понятие было введено французским математиком и философом Э. Леруа в 1927 г. Ноосфера рассматривается как высшая стадия развития биосферы, связанная с возникновением в ней цивилизованного общества.

. Экологические системы.

Популяционно-видовой уровень - это совокупность особей одного вида, объединенных общей территорией и генофондом.

Вид - совокупность особей, обладающих наследственным сходством морфологических, физиологических и биохимических свойств, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к определенным условиям жизни и занимающих в природе определенный ареал. Виды отличаются друг от друга по многим признакам:

. Морфологический критерий базируется на сходстве внешнего и внутреннего строения особей одного вида.

. Генетический критерий - это характерный для каждого вида набор хромосом, строго определенное их число, размер и форма, это главный видовой признак.

. Физиологический критерий - это сходство всех процессов жизнедеятельности и, прежде всего сходство размножения.

. Географический критерий - определенный ареал, занимаемый видом в природе.

. Экологический критерий - совокупность факторов внешней среды, в которой существует вид.

Совокупность особей одного вида, распространённая на определённой территории называется популяцией, например, стадо оленей или берёзовая роща. Основными характеристиками популяции являются:

. Плотность определяется числом особей, приходящихся на единицу площади или объема.

. Численность различна у разных видов, но она не может быть ниже некоторых пределов. Падение численности ниже критической может привести к исчезновению популяции.

. Возрастной состав зависит от продолжительности жизни особей, периода достижения ими половой зрелости.

. Характер распределения особей популяции в пространстве может быть равномерным, случайным или скученным.

Биоценоз включает все популяции разных видов, характеризующиеся определенными отношениями как между собой, так и с неорганической средой на определенной территории, называемой биотопом.

Биогеоценоз (наземная экосистема) - выделённый участок земной поверхности со своим природным набором живых существ (биоценоз) и др. компонентов: приземный слой атмосферы, почва, солнечная энергия (озеро, поляна, участок леса - биотоп). Очень крупные экосистемы называются биомами.

Биом - совокупность видов растений и животных, составляющих население одной природной зоны и характеризующаяся определенным типом структуры сообщества, выражающая комплекс адаптации к условиям среды. Существуют следующие основные типы биомов: тундра, хвойный лес, лиственный лес, влажный тропический лес, степь и пустыня.

Экосистемы подразделяются по степени антропогенного воздействия на естественные (сохранившиеся в неприкосновенности), модифицированные (изменившиеся от деятельности человека) и трансформированные (преобразованные человеком). Экосистема состоит из 4-х основных элементов.

. Неживая (абиотическая) среда обитания - вода, минеральные вещества, газы, а также неживые органические вещества и гумус.

2. Продуценты (производители) - живые существа, способные из неорганических материалов среды строить органические вещества. К ним относятся автотрофные организмы, производящие пищу, т.е. первичные органические вещества, в процессе фото- или хемосинтеза. Такую работу выполняют, главным образом, зелёные растения, производящие с помощью солнечной энергии из углекислого газа, воды и минеральных веществ органические соединения. Органические вещества, производимые растениями, идут в пищу животным и человеку, а высвободившийся кислород используется при дыхании.

. Консументы - потребители растительной и животной продукции - гетеротрофные организмы, главным образом животные, поедающие другие организмы.

В зависимости от источников питания различают несколько групп консументов:

. Фитофаги - растительноядные, это консументы первого порядка. К ним относятся животные, питающиеся растениями (от тли и кузнечика до лошади и коровы).

. Паразиты - консументы четвертого порядка.

. Симбиотрофы - микроорганизмы, питающиеся корневыми выделениями растений (нити грибов, микроорганизмы, живущие в пищеварительном тракте животных - фитофагов).

. Эврифаги - всеядные организмы со смешанным типом питания, питаются как растениями, так и животными.

. Детритофаги - организмы, питающиеся мертвым органическим веществом - остатками растений и животных (выполняют функцию очищения экосистем).

. Редуценты (разрушители) - гетеротрофные организмы, которые завершают работу детритофагов, они разлагают остатки отмерших существ (растительные остатки или трупы животных превращаются снова в исходное сырьё (вода, минеральные вещества и углекислый газ), пригодное для продуцентов, превращающих эти составные части снова в органические вещества. К ним относятся грибы, бактерии, беспозвоночные (например, черви).

Детритофаги и редуценты по типу питания выделяют в особые группы организмов - сапрофаги (питаются мертвыми органическими останками животных) и сапрофиты (питаются остатками растений и животных).

Взаимосвязи организмов в экосистемах весьма многообразны. Наиболее важное значение имеют пищевые или трофические взаимосвязи: один организм поедается другим, тот третьим и т.д. Ряд таких звеньев называется пищевой или трофической цепью.

Пищевые цепи - последовательность организмов разных трофических уровней, в которых каждое предыдущее звено служит пищей для последующего. В природе они взаимосвязаны и образуют сложную пищевую сеть.

Экосистема живет и развивается как единое целое. В природе менее устойчивые экосистемы со временем сменяются на более устойчивые. Их смена определяется тремя факторами:

) упорядоченным процессом развития экосистемы - установлением в ней стабильных взаимоотношений между видами;

) изменением климатических условий;

) изменением физической среды под влиянием жизнедеятельности организмов, составляющих экосистему.

Последовательная смена одних экосистем другими на определенном участке земной поверхности под воздействием природных или антропогенных факторов называется сукцессией. Сукцессии подразделяют на первичные и вторичные.

Первичные сукцессии развиваются на лишенном жизни месте, где условия существования поначалу не являются благоприятными. Примером первичной сукцессии является зарастание песчаных дюн или лавовых потоков.

Вторичные сукцессии происходят на участке, уже занятом хорошо развитым сообществом (под влиянием внутренних факторов - жизнедеятельности организмов), или освободившемся после разрушения сообщества под воздействием внешних причин (стихийных бедствий - пожаров, наводнений или в результате деятельности человека). Примером вторичной сукцессии под влиянием внутренних факторов может служить процесс зарастания озера (под воздействием жизнедеятельности населяющих его организмов озеро медленно наполняется мертвым органическим веществом, постепенно в озере уменьшается глубина, и в конце концов оно превращается в болото, а затем и в сушу). Сукцессию можно наблюдать и на городских улицах, например, мхи, лишайники и сорняки заселяют трещины на тротуарах. Сукцессия завершается стадией, когда все виды экосистемы сохраняют относительно постоянную численность и дальнейшей смены ее состава не происходит. Такое равновесное состояние называется климаксом, а экосистема - климаксовой.

Внезапное резкое увеличение численности одних видов происходит за счет гибели других, при этом возникают экологические нарушения. Экологические нарушения возникают при вторжении в экосистему новых видов (кролик в Австралии) или при непродуманном воздействии человека на природу (сброс биогенов в водоем).

На формирование экосистем влияют абиотические и биотические факторы. К абиотическим факторам в первую очередь относят факторы неорганической природы: свет, температура, влажность, давление, агрегатное состояние самой среды, химический состав, концентрация веществ в ней, а также физические поля, радиация, суточные и сезонные изменения в природе. Биотические факторы - это прямые или опосредованные воздействия других организмов, населяющих среду обитания данного организма. Все биотические факторы обусловлены внутривидовыми и межвидовыми взаимодействиями. К биотическим факторам среды относятся и питательные вещества, т.е. элементы или их соединения, необходимые для жизнедеятельности организмов, их роста и размножения. Элементы, постоянно присутствующие в живых организмах и выполняющие там определенные функции, называются биогенными элементами. Часть их них требуется в больших количествах и входит в организм в больших количествах - это макробиогенные элементы. Элементы, требующиеся в небольшом количестве и входящие в организм в небольших концентрациях - микробиогенные.

Биотические факторы включают определенные типы отношений между живыми организмами:

1. Нейтрализм, при котором совместно обитающие на одной территории популяции не влияют друг на друга. При нейтрализме особи разных видов не связаны друг с другом непосредственно, например, белки и лоси в одном лесу не контактируют друг с другом.

2. Симбиоз - форма взаимоотношений, при котором оба вида или один из них извлекает пользу от другого. Положительные симбиотические взаимоотношения представлены в природе самыми разнообразными формами.

Тип взаимоотношений, при котором один из двух совместно обитающих видов извлекает пользу из совместного существования, не причиняя вреда другому виду, называется комменсализмом. Например, в открытом океане крупных морских животных - акул, дельфинов, черепах - часто сопровождают небольшие рыбы-лоцманы. Лоцманы кормятся остатками пищи животных, которых сопровождают, а также их паразитами. Близость к крупным хищникам защищает лоцманов от нападения. Такие отношения межу видами принято называть нахлебничеством. Нахлебничество принимает разные формы. Например, гиены подбирают остатки недоеденной львами добычи.

Зачастую тела других организмов или их местообитания служат убежищем. Эта форма взаимоотношений получила название квартирантства. Например, мальки рыб прячутся под зонтиками крупных медуз, где находятся под защитой щупалец.

Следующим видом симбиоза является протокооперация - когда совместное существование выгодно обоим видам, но необязательно для них (сосуществование актинии и рака-отшельника).

Наиболее сильная взаимосвязь между организмами возникает при мутуализме, когда оба вида не только извлекают пользу из совместного существования, но и не могут жить самостоятельно. Примером мутуализма являются отношения микроорганизмов, обитающих в желудке жвачных копытных животных. Жвачные питаются растительной пищей, однако у них нет ферментов, расщепляющих целлюлозу. Микроорганизмы вырабатывают такие ферменты, переводя целлюлозу в простые сахара, при этом получают в желудке пищу и условия для размножения. Без микроорганизмов-симбионтов крупные животные могут погибнуть от голода.

. Антибиоз, при котором обе взаимодействующие популяции или одна из них испытывают отрицательное влияние

Хищничество - при котором представители одного вида ловят и поедают представителей другого вида. Частным случаем хищничества служит каннибализм - поедание особей своего вида, чаще всего молоди.

Другим видом антибиоза является паразитизм - когда один из видов использует другой в качестве источника пищи, места обитания, защиты от врагов и т.д. Переход к паразитизму резко увеличивает возможность вида выжить в борьбе за существование. К числу постоянных паразитов относятся простейшие (дизентерийная амеба), плоские черви (сосальщики, цепни), круглые черви (аскарида, трихина и многие другие), членистоногие (вши, блохи, чесоточный клещ). Паразиты могут поселяться в крови, в тканях и полостях тела. Поскольку при постоянном паразитизме организм хозяина - единственное местообитание для паразита, с гибелью хозяина погибает и паразит. У человека могут паразитировать около 500 видов, практически во всех частях тела.

Когда у двух близких видов наблюдаются сходные потребности (в пище, местах обитания и т.п.) возникает еще один биотический фактор - конкуренция. Различают три основных типа конкуренции: взаимное конкурентное подавление, конкуренция из-за ресурсов и аменсализм - когда одна из популяций подавляет другую.

Животные в экосистемах редко конкурируют, поскольку разные виды адаптированы к питанию неодинаковой пищей и в разных местах или в разное время, то есть занимают различные экологические ниши.

Экологическая ниша - совокупность всех факторов природной среды, в пределах которой возможно существование вида (местообитание, взаимоотношения с другими видами, конкуренция за пищу, наличие врагов и т.д.).

Воздействие антропогенных факторов на биосферу

В отношении поступления энергии природные и антропогенные экосистемы сходны. И природным и искусственным (дома, города) экосистемам требуется поступление энергии извне, но естественные экосистемы получают энергию от практически вечного источника - солнца, которое не загрязняет окружающую среду. Человек, напротив питает процессы производства и потребления в основном за счёт конечных источников энергии - угля и нефти, которые наряду с энергией выделяют пыль, газы, тепловые и другие отходы, наносящие вред окружающей среде и не поддающиеся переработке внутри самой искусственной экосистемы.

Загрязнение - привнесение в окружающую среду или возникновение в ней новых, обычно не характерных для неё физических, химических или биологических агентов с концентрациями или уровнями, приводящими к негативным последствиям для природной среды и человека. Загрязнение может быть вызвано любым агентом, в том числе самым чистым (лишняя по отношению к природной норме вода в экосистеме суши - загрязнитель). Загрязнение может возникать в результате естественных причин (загрязнение природное). Либо может возникать в результате человеческой деятельности (антропогенное).

В настоящее время, ухудшение качества окружающей человека среды происходит в результате индустриализации и урбанизации его образа жизни, постепенного возрастания демографической нагрузки на природу, хозяйственного уничтожения отдельных видов животных и растений, отрицательных генетических последствий загрязнения природы отходами производственной деятельности человека, включая опасность генетического перерождения самого человека. Если человеком не будут предприняты меры по предотвращению загрязнения окружающей среды, то существующий экологический кризис может перерасти в экологическую катастрофу. Экологический кризис - критическое состояние окружающей среды, которое угрожает существованию человека и вызвано расточительным использованием природных ресурсов (воды, воздуха, почвы, растительного и животного мира) и загрязнением окружающей природной среды.

Основными методами защиты биосферы в настоящее время являются:

1. Применение безотходных технологий и новых методов для наиболее рационального использования природных ресурсов, энергии и защиты природной среды.

2. Применение малоотходных технологий с выбросами вредных веществ, не превышающих ПДК.

3. Разработка и применение норм ПДК вредных веществ в атмосфере, рабочей зоне, почве, водоемах и продуктах питания.

. Разработка и применение норм предельно допустимых выбросов и сбросов, мест размещения отходов по каждому экологически опасному предприятию.

5. Использование способности самоочищаться элементов биосферы: высотные трубы для рассеивания вредных примесей атмосфере, канализация в морские глубины вдали от берега и разбавление стоков чистой водой.

Тема 2. Атмосферный воздух

. Источники загрязнения атмосферы

Воздушная, самая лёгкая оболочка земного шара - атмосфера - состоит из механической смеси газов (%): азота - 78,09, кислорода - 20,95, аргона - 0,93, углекислого газа - от 0,02, а также гелия, неона, ксенона, криптона, водорода, озона, аммиака, йода и других, на долю которых приходится около 0,01 % всего её объёма.

Основные части атмосферы подразделяют:

. Постоянные компоненты (азот, кислород, аргон и другие благородные газы).

. Переменные компоненты. Их концентрация меняется в зависимости от места, времени года, времени суток и от многих других факторов (углекислый газ и водяной пар).

. Случайные компоненты определяются местными условиями, концентрация их непостоянна (метан, диоксид серы, оксиды азота, водород, озон, аммиак и огромное количество техногенных примесей (жидких, твердых и газообразных)).

Под загрязнением атмосферы следует понимать изменение её химического состава при поступлении примесей естественного или антропогенного происхождения. К естественным источникам загрязнения относятся:

а) внеземное загрязнение воздуха пылью космического происхождения и космическим излучением;

б) земное загрязнение атмосферы при извержениях вулканов, пыльных бурях, лесных и степных пожарах, пылью эрозии почв, частицами морской соли, продуктами растительного, животного и микробиологического происхождения.

Основными антропогенными источниками загрязнения атмосферы являются автомобильный транспорт и промышленные предприятия.

Автомобильный транспорт относится к наиболее значимым источникам загрязнения окружающей среды в большинстве крупных городов, при этом на 90 % воздействие на атмосферу связано с работой автотранспортных средств на линии, остальной вклад вносят стационарные источники (цехи, участки, станции техобслуживания и стоянки). Это происходит по двум причинам:

- во-первых, автомобильный двигатель в процессе работы выделяет в атмосферу целый комплекс веществ: соединения серы и свинца, оксиды азота и углерода, альдегиды, ароматические углеводороды, сажа, бенз(а)пирен и так далее. Отработавшие газы автомобильных двигателей содержат около двухсот веществ, большинство из которых токсичны. В выбросах карбюраторных двигателей основная доля вредных продуктов приходится на оксид углерода, углеводороды и оксиды азота, в выбросах дизельных двигателей - на оксиды азота и сажу;

во-вторых, автомобиль при движении взаимодействует с поверхностью дороги и результатом этого взаимодействия является аэрозоль, количество которого зависит от многих специфических факторов, характеризующих состояние дороги.

Сейчас на Земле эксплуатируется около 900 млн. автомобилей, в настоящее время на долю транспорта приходится больше половины всех вредных выбросов в окружающую среду, особенно в крупных городах. В среднем при пробеге 15 тыс. км за год каждый автомобиль сжигает 2 т топлива и около 26-30 т воздуха, в том числе 4,5 т кислорода, что в 50 раз больше потребностей человека.

К промышленным источникам загрязнения атмосферы следует отнести:

. Сжигание горючих ископаемых, которое сопровождается выбросом 5 млрд. тонн углекислого газа в год. В результате этого за последние 100 лет содержание СО2 в атмосфере увеличилось на 20%.

. Работа тепловых электростанций, когда при сжигании высокосернистых углей в результате выделения сернистого газа и мазута образуются кислотные дожди.

. Выхлопы современных турбореактивных самолетов с оксидами азота и газообразными фторуглеводородами из аэрозолей, которые могут привести к повреждению озонового слоя атмосферы.

. Загрязнение взвешенными частицами (при измельчении, фасовке и загрузке, от котельных, электростанций, карьеров и при сжигании мусора).

. Выбросы предприятиями различных газов.

. Сжигание топлива в промышленных котлах, сопровождающееся образованием оксидов азота, которые вызывают смог.

. Вентиляционные выбросы с чрезмерной концентрацией озона из помещений с установками высоких энергий (ускорители, ультрафиолетовые источники и атомные реакторы). В больших количествах озон является высокотоксичным газом.

. Нормирование загрязнений атмосферного воздуха

Методологические основы гигиенического нормирования атмосферных загрязнений включают следующие положения:

1. Допустимой признается только такая концентрация химического вещества в атмосфере, которая не оказывает на человека прямого или вредного косвенного либо неприятного действия, не влияет на самочувствие и работоспособность.

. Привыкание к вредным веществам, находящимся в атмосферном воздухе, рассматривается как неблагоприятный эффект.

3. Концентрация химических веществ в атмосфере, которые неблагоприятно действуют на растительность, климат местности, прозрачность атмосферы и бытовые условия жизни населения, считается недопустимой.

Основными среди нормируемых показателей качества атмосферы являются предельно допустимые концентрации вредных веществ. Предельно допустимая концентрация вещества - это такая его концентрация, при воздействии которой на организм человека и окружающую среду периодически или в течение всей жизни, прямо или опосредствованно не возникает ни прямого, ни вредного косвенного воздействия, обнаруживаемого современными методами исследования сразу или в отдаленные сроки жизни настоящего и последующих поколений.

Под прямым воздействием имеется в виду нанесение организму временного раздражения, вызывающего кашель, головные боли, ощущение запаха, которое наступает при превышении пороговой величины концентрации вещества.

Необходимо также учитывать, что при одновременном присутствии нескольких вредных соединений, может наблюдаться эффект их однонаправленного (суммированного) действия. В этих случаях суммарная концентрация загрязняющих веществ не должна превышать единицы:

Применительно к атмосфере различают ПДК: максимальные разовые вредных веществ в воздухе населенных мест (ПДКмр), среднесуточные вредных веществ (ПДКсс), вредных веществ в воздухе рабочей зоны (ПДКрз). Все они измеряются в (мг/м3) при нормальных условиях (давление 1 атм, температура 0 °С).

ПДКмр - это концентрация, не вызывающая рефлекторных реакций в организме человека (ощущение запаха, световая чувствительность). ПДКмр - основная характеристика опасности тех вредных веществ, которые оказывают немедленное раздражающее действие, ограниченное временем (не более 20 мин).

ПДКсс - это концентрация вещества в воздухе населенного пункта, не оказывающая на человека прямого или косвенного негативного влияния при неопределенно долгом круглосуточном вдыхании. Она применяется для предупреждения общетоксического, канцерогенного, мутагенного и другого вредного воздействия вещества при его накоплении в организме человека. При этом имеются в виду среднесуточные концентрации в среднем за год, а не за каждые отдельные сутки.

Для ряда территорий вводят более строгие, чем для населенных мест, нормативы ПДК. Так, в местах размещения крупных санаториев и домов отдыха, зонах отдыха городов они на 20% меньше, чем в жилых районах.

ПДКрз - это концентрация вещества в воздухе, не вызывающая у трудящихся, находящихся на рабочем месте по 8 ч пять раз в неделю, заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследования, как в течение всей трудовой деятельности, так и в отдаленной перспективе. ПДКрз, значительно больше, чем для населенных мест. Это объясняется тем, что на предприятии люди присутствуют лишь часть суток, там не могут находиться дети и пожилые люди.

Концентрация вредных веществ в атмосфере зависит от их количества, выбрасываемого всеми источниками загрязнения. Чтобы эти концентрации не превышали ПДК, для каждого источника загрязнения устанавливают предельно допустимый выброс.

ПДВ - это максимально возможная для данного источника за единицу времени масса выбросов загрязняющих веществ в атмосферу (т/год). Величина ПДВ зависит от местоположения источника по отношению к жилым районам, условий рассеивания загрязнителей, температуры воздуха, рельефа местности и т.д. Поэтому для одинаковых источников загрязнений величины ПДВ могут быть разными и устанавливаются раздельно для каждого из веществ.

Сущность расчета ПДВ состоит в том, чтобы концентрация выбросов примесей от данного источника в совокупности с фоновой концентрацией Сф не создавали приземную концентрацию вредного вещества, превышающую ПДК: С + Сф<ПДК.

. Планировка санитарно-защитной зоны

Для снижения вредного влияния загрязнённого воздуха на человека применяют специальные градостроительные мероприятия: зональную застройку жилых массивов, когда близко к дороге располагают низкие здания, затем высокие и под их защитой - детские и лечебные учреждения; озеленение, ССЗ вокруг заводов размером от 50 м и более.

Предприятия, выделяющие в окружающую среду вредные и неприятно пахнущие вещества необходимо отделять от жилой застройки СЗЗ, которая определяется как территория между источником выделения производственных вредностей (физических, химических, биологических) и границей, где влияние этих веществ не превышает 5% от соответствующих гигиенических нормативов.

Размеры СЗЗ определяются мощностью предприятия, условиями осуществления технологического процесса, характером и количеством выделяющихся в окружающую среду веществ. По совокупности этих показателей предприятия разделены на пять классов, для которых установлены следующие значения ширины санитарно-защитных зон:

Класс I II III IV V

Ширина СЗЗ, м 1000 500 300 100 50

Предприятия I-III классов запрещено располагать среди жилой застройки даже при соблюдении необходимых размеров СЗЗ.

СЗЗ нельзя рассматривать как резервную территорию предприятия и использовать ее для расширения промышленной площадки. Вместе с тем в ней допустимо размещение объектов более низкого класса вредности, чем основное производство, для которого установлена санитарно-защитная зона, а также пожарных депо, гаражей, складов, стоянок транспорта и т.п.

Санитарно-защитные зоны подлежат озеленению газоустойчивыми породами деревьев и кустарников. При прохождении промышленных выбросов через озелененную зону концентрация содержащихся в них пыли и газов должна уменьшиться не менее чем вдвое.

. Влияние выбросов загрязняющих веществ на здоровье населения

Опасность для здоровья населения загрязнения атмосферного воздуха обусловлена объективным действием следующих факторов.

Во-первых, разнообразием загрязнений. Считается, что на человека потенциально может воздействовать несколько сотен тысяч химических веществ. Реально, как правило, в конкретном районе в относительно высоких концентрациях присутствует ограниченное число загрязнителей. Однако комбинированное действие примесей может приводить к усилению вызываемых ими токсических эффектов.

Во-вторых, возможностью массированного воздействия, так как акт дыхания является беспрерывным и человек за сутки вдыхает до 20 тыс. л воздуха. Даже незначительные концентрации химических веществ при таком объеме дыхания приводят к значительному поступлению примесей в организм.

В-третьих, непосредственным доступом загрязнителей во внутрь организма. Воздух при дыхании входит почти в непосредственный контакт с кровью, в которой растворяется почти всё, что присутствует в воздухе. Из легких кровь поступает в большой круг кровообращения, минуя такой детоксикационный барьер, как печень. Установлено, что яд, поступивший ингаляционным путем, нередко действует в 8-100 раз сильнее, чем при поступлении через желудочно-кишечный тракт.

В-четвертых, трудностью защиты от загрязнителя. Человек, отказавшись употреблять в пищу загрязненные продукты или недоброкачественную воду, не может не дышать загрязненным воздухом.

Тема 3. Методы и средства защиты атмосферы от загрязняющих ее веществ

. Методы защиты атмосферы от химических примесей

Все известные методы и средства защиты атмосферы от химических примесей можно объединить в три группы:

. мероприятия, направленные на снижение мощности выбросов, т.е. уменьшение количества выбрасываемого вещества в единицу времени. Для снижения мощности выбросов химических примесей в атмосферу наиболее широко используют:

- замену менее экологичных видов топлива экологичными (применяют топливо с более низким баллом загрязнения атмосферы);

- сжигание топлива по специальной технологии (либо в кипящем (псевдоожиженном) слое, либо предварительной их газификацией);

- создание замкнутых производственных циклов (вторично используются и потребляются выбрасываемые в атмосферу отходы).

2. мероприятия по нормированию выбросов как на отдельных предприятиях и устройствах, так и в регионе в целом.

3. мероприятия, направленные на защиту атмосферы путем обработки и нейтрализации вредных выбросов специальными системами очистки.

2. Классификация систем очистки воздуха.

По агрегатному состоянию загрязнители воздуха подразделяются на пыли, туманы и газопарообразные примеси.

Механические системы очистки воздуха от пыли (см. рис.2) делятся на четыре основные группы: сухие и мокрые пылеуловители, а также электрофильтры и фильтры. При повышенном содержании пыли в воздухе используют пылеуловители и электрофильтры. Фильтры применяют для тонкой очистки воздуха с концентрацией примесей менее 100 мг/м3. Выбор пылеулавливающего устройства также определяется дисперсным составом улавливаемой частицы промышленной пыли.

Для механической очистки воздуха от туманов (например, кислот, щелочей, масел и др. жидкостей) используют системы фильтров, называемых туманоуловителями.

Средства защиты воздуха от газопарообразных примесей зависят от выбранного метода очистки. По характеру протекания физико-химических процессов выделяют методы абсорбции (промывка выбросов растворителями примеси), хемосорбции (промывка выбросов растворами реагентов, связывающих примеси химически), адсорбции (поглощение газообразных примесей за счет катализаторов), термической нейтрализации (сжигание) и каталитический метод.

Процесс очистки от вредных примесей характеризуется тремя основными параметрами: общей эффективностью очистки, гидравлическим сопротивлением, производительностью.

. Общая эффективность очистки показывает степень снижения вредных примесей в применяемом средстве и характеризуется коэффициентом

загрязнение атмосфера гидросфера литосфера

где Свх и Свых - концентрации вредных примесей до и после средства очистки.

. Гидравлическое сопротивление определяется как разность давления на входе Рт и выходе Рвых из системы очистки.

. Производительность систем очистки показывает, какое количество воздуха проходит через нее в единицу времени (м3/ч).

3. Системы и аппараты пылеулавливания (механические методы очистки запыленного воздуха)

Сухие пылеуловители. К сухим пылеуловителям относятся такие, в которых очистка движущегося воздуха от пыли происходит механически под действием сил гравитации и инерции. Эти системы называются инерционными, так как в них при резком изменении направления движения воздуха частицы пыли, по инерции сохраняя направление своего движения, ударяются о поверхность, теряют свою энергию и под действием сил гравитации осаждаются в специальном бункере.

Для сухой очистки воздуха чаще употребляют центробежные обеспыливающие системы (циклоны). Воздух, попадая во внутренний корпус циклона, совершает вращательно-поступательное движение вдоль корпуса по направлению к бункеру (вниз). Под действием сил инерции частицы пыли осаждаются на стенках корпуса, а затем попадают в бункер. Очищенный воздух выходит из бункера через выходную трубу.

Особенностью таких систем очистки является обязательная герметичность бункера, в противном случае из-за подсоса воздуха осаждаемые частицы пыли падают в выходную трубу. Эффективность циклонов зависит от концентрации пыли и размеров ее частиц и резко снижается при уменьшении этих показателей. Общая степень улавливания циклона составляет 95 %. Преимущество циклонов - простота конструкции, небольшие размеры, отсутствие движущихся частей; недостатки - затраты энергии на вращение и большой абразивный износ частей аппарата пылью.

Мокрые пылеуловители - скрубберы. Особенностью этих систем очистки является высокая эффективность очистки воздуха от мелкодисперсной пыли (менее 1,0 мкм). Эти системы обеспечивают возможность очистки от пыли горячих и взрывоопасных газов. Они работают по принципу осаждения частиц пыли на поверхность капель (или пленки) жидкости под действием сил инерции и броуновского движения.

В качестве орошающего агента в скруббер может подаваться химический агент (например, известковое молоко), тогда в аппарате будет происходить химическая очистка газов.

Электрофильтры. Их работа основана на одном из наиболее эффективных видов очистки газов от пыли - электрическом. Основной принцип работы - ударная ионизация газа в неоднородном электрическом поле, которое создается в зазоре между коронирующим и осадительным электродами. Загрязненные газы, попав между электродами, способны проводить электрический ток вследствие имеющейся частичной ионизации. Отрицательно заряженные частицы движутся к осадительному электроду, положительно заряженные оседают на коронирующем электроде. Так как большинство частиц пыли получают отрицательный заряд, основная масса пыли осаждается на положительном осадительном электроде, с которого затем легко удаляется. Эффективность очистки газов электрофильтрами достигает 97%. Преимущества: способность очищать газы от мелких частиц (от 0,2 мкм). Недостатки: значительный расход энергии, необходимость чистить электроды с помощью встряхивающих устройств, высокие требования к технике безопасности.

Фильтры широко используются для тонкой очистки промышленных выбросов. Работа их основана на фильтровании воздуха через пористую перегородку, в процессе которой твердые частицы примесей задерживаются на ней. В промышленности наиболее употребительны тканевые рукавные фильтры. В корпусе фильтра устанавливается необходимое число рукавов, на которые подается загрязненный воздух, при этом очищенный воздух выходит через патрубок. Частицы загрязнений оседают на фильтре. Насыщенные загрязненными частицами рукава продувают и встряхивают для удаления осажденных частиц пыли. Эффективность таких фильтров достигает 0,99 для частиц размером боле 0,5 мкм.

Туманоуловители. Для очистки воздуха от туманов, кислот, щелочей, масел и других жидкостей используются волокнистые фильтры, принцип действия которых основан на осаждении капель на поверхности пор с последующим их стеканием под действием гравитационных сил.

. Физико-химические методы очистки загрязненного воздуха

Метод абсорбции заключается в разделении газовоздушной смеси на составные части путем поглощения одного или нескольких газовых компонентов поглотителем (абсорбентом) с образованием раствора. Состав абсорбента выбирается из условия растворения в нем поглощаемого газа. Например, для удаления из технологических выбросов таких газов, как аммиак, хлористый водород и др., целесообразно применять в качестве поглотительной жидкости воду. Для улавливания водяных паров используют серную кислоту, а ароматических углеводородов - вязкие масла.

Абсорберы чаще всего представляют собой скрубберы, в которые подается не вода, а жидкий реагент. В абсорберах в отличие от обычных скрубберов имеется насадка для увеличения площади поверхности контакта жидкости и газов. В них происходит механическая и главным образом химическая очистка газов от таких вредных выбросов, как оксиды азота, серы, угля, а также от сероуглерода и меркаптанов. Скорость абсорбции зависит главным образом от температуры и давления: чем выше давление и ниже температура, тем выше скорость абсорбции.

Метод хемосорбции основан на поглощении газов и паров твердыми или жидкими поглотителями с образованием химических соединений. Реакции хемосорбции экзотермические (поглощение тепла). Установки для хемосорбции внешне напоминают абсорберы. Оба эти метода называются мокрыми и в зависимости от очищаемого компонента и применяемого растворителя или поглотителя их эффективность может достигать 0,75-0,92.

Метод адсорбции основан на физических свойствах некоторых пористых материалов, извлекать из газовоздушной смеси отдельные ее компоненты. Широко известный пример адсорбента с ультрамикроскопической структурой - активированный уголь. Метод адсорбции позволяет проводить очистку вредных выбросов при повышенных температурах. Конструктивно адсорберы выполняются в виде вертикальных или горизонтальных емкостей, заполненных адсорбентом, через который проходит поток очищаемых газов.

При каталитическом методе токсичные компоненты газовоздушной смеси, взаимодействуя со специальным веществом - катализатором, превращаются в безвредные вещества. В качестве катализаторов используются металлы или их соединения (платина, оксиды меди и марганца и пр.). Катализатор, выполняемый в виде шаров, колец или спиральной проволоки, играет роль ускорителя химического процесса. Добавка благородных металлов в виде пленки на поверхности катализатора составляет сотые доли процента к его массе.

Термический метод требует поддержания высоких температур очищаемого газа и наличия достаточного количества кислорода. В термических катализаторах сжигаются такие газы, как, например, углеводороды, оксид углерода, выбросы лакокрасочного производства. Эффективность этих систем очистки достигает 0,9-0,99, температура в зоне горения 500-750 °С.

Характерным примером очистки газов этим способом является применение факела на нефтеперерабатывающих заводах. Со всех производств нефтеперерабатывающего завода отработавшие газы с различным содержанием горючих веществ собираются в одну магистраль, подаются в трубу и на высоте около 100 м сжигаются. Выброс этих газов (отходов производства) без сжигания недопустим, так как они не только ядовиты, но и взрывоопасны. Преимуществом метода сжигания вредных примесей является полная очистка газов в широком диапазоне типов загрязнителей с выделением оксида углерода и пара, а недостатком - дополнительный расход топлива.

Тема 4. Гидросфера

. Источники загрязнения гидросферы

Загрязнение водных ресурсов возникает при залповом сбросе вредных веществ в поверхностные и подземные водные объекты, который причиняет вред или создает угрозу здоровью населения, нормальному осуществлению хозяйственной и иной деятельности, состоянию окружающей природной среды, а также биологическому разнообразию.

Объект, вносящий в поверхностные или подземные воды различные вредные вещества, микроорганизмы или тепло, называется источником загрязнения. Источниками загрязнения также признаются объекты, с которых осуществляется сброс или иное поступление в водные объекты вредных веществ, ухудшающих качество поверхностных вод, ограничивающих их использование, а также негативно влияющих на состояние дна и береговых водных объектов. Подавляющее большинство источников загрязнения гидросферы - техногенного происхождения. Среди них доминируют сбросы в водоемы сточных вод субъектами природопользования (предприятиями промышленности, коммунальными и сельскохозяйственными).

Сбросами называют сточные воды, содержащие в своем составе растворенные и взвешенные вещества, отводимые в гидросферу или литосферу. Сбросы подразделяются на организованные (отводятся через специальные сооружения водовыпуски) и неорганизованные (стекают в водные объекты непосредственно с территории предприятий, необорудованных ливневыми канализациями или другими устройствами).

Сточные воды - воды, используемые на бытовые, производственные или другие нужды и загрязненные различными примесями, которые изменили их первоначальный состав, физические и биологические свойства, а также воды, стекающие с территории населенных пунктов и промышленных предприятий в результате выпадения атмосферных осадков или полива территории. В состав сточных вод входят минеральные вещества (глина, песок, хлориды, сульфаты и соли тяжелых металлов), органические вещества (белок, жиры, нефтепродукты, СМС и ПАВ) и биогенные элементы (соединения азота и фосфора). Все вышеперечисленные вещества могут находиться в грубодисперсном, коллоидном и растворенном состояниях. В грубодисперсном состоянии находятся от 15-20% загрязнителей, в коллоидном - от 50 до 60%, все остальные - в растворенном виде. Все сточные воды по источнику образования могут быть разделены на производственные, бытовые и атмосферные:

. К производственным относят сточные воды технологических процессов изготовления и перемещения материальных благ. Промышленные сточные воды представляют собой жидкие отходы, которые возникают при добыче и переработке органического и неорганического сырья. В технологических процессах источниками сточных вод являются:

а) воды, образующиеся при протекании химических реакций (они загрязнены исходными веществами и продуктами реакций);

в) промывные воды после промывки сырья, продуктов и оборудования;

г) водные экстракты и абсорбенты;

е) воды охлаждения;

ж) воды с вакуум-насосов, конденсаторов смешения, систем гидрозолоудаления, после мытья тары, и помещений.

. В бытовые входят стоки от санитарных узлов, душевых и им подобных установок технологических производств, все стоки предприятий сферы услуг, коммунального хозяйства и жилищного фонда. Они содержат примеси, из которых примерно 58% органических и 42% минеральных веществ.

. Атмосферные стоки представлены потоками дождя и тающего снега. Они загрязняются органическими и минеральными веществами.

В зависимости от происхождения и степени загрязнения сточные воды, сбрасываемые в водоем, делят на незагрязненные (условно чистые), нормативно очищенные и без очистки (загрязненные):

. К условно чистым относят такие стоки, которые не приводят к изменениям физико-химического состава водоема в месте сброса (образуются после вентиляционных установок и охлаждения оборудования). Они не требуют предварительной очистки (от 6 до 18%).

. Нормативно очищенными называют прошедшие очистку стоки, сброс которых не приводит к изменению качества воды в водоеме. Содержание загрязняющих веществ в них соответствует предельно допустимым концентрациям (7-9%).

. К загрязненным относят стоки, сброшенные без очистки или недостаточно очищенные, содержащие загрязняющие вещества выше предельно допустимых норм (смесь отработанных жидкостей после технологического процесса, а также после мытья оборудования - от 70 до 80%).

По генезису примесей стоки классифицируют на загрязненные преимущественно неорганическими (металлургические и цементные заводы, предприятия химической промышленности), органическими (нефтехимия, органический синтез), смешанными, т.е. органическими и неорганическими (нефте- и газодобыча) примесями, а также микроорганизмами (бактериями, вирусами), наиболее характерными для биохимических и биологических процессов.

По концентрации загрязняющих веществ производственные сточные воды подразделяют на четыре группы: I - 500, II - 501-5000, III - 5001-30000, IV - более 30 тыс. мг/л.

По степени агрессивности различают неагрессивные (рН=6,5-8,0), слабоагрессивные (рН=6,0-6,5 и 8-9) и сильноагрессивные (рН менее 6 и более 9) стоки. Это деление совпадает с представлениями соответственно о нейтральных, слабокислых и слабощелочных, сильнокислых и сильнощелочных средах.

Источники загрязнения природных вод подразделяются на:

. Сточные воды промышленных предприятий объёмом несколько тыс. км3 в год. При разработке пластовых месторождений в нашей стране каждый год образуется около 2,5 тыс.км3 дренажных шахтных и шламовых вод, которые загрязнены хлористыми и сульфатными соединениями, соединениями железа и меди, не годятся даже в качестве технической воды и перед сбросом должны быть очищены.

. Городские сточные воды, содержащие растворимые органические вещества, микроорганизмы, взвешенные частицы. Всего в стране за год образуется около 100 км3 таких вод.

. Канализационные воды животноводческих хозяйств.

. Дождевые и талые воды с растворёнными химическими веществами, образующиеся в городах и на полях.

. Водный транспорт.

. Естественные осадки из атмосферы.

. Газодымовые выбросы.

. Утечки нефти и нефтепродукты.

Под загрязняющим агентом водного бассейна понимают материальные субстанции (химические соединения, микроорганизмы, тепло), нарушающие нормы качества воды.

В зависимости от влияния на водную среду выделяют следующие группы загрязняющих веществ:

загрязняющие вещества, способные самоочищаться или включаться в природные циклы, т.е., вещества, поддающиеся биохимическому разложению (органические вещества);

загрязняющие вещества, накапливающиеся в живых организмах и поддающиеся медленному биохимическому окислению или разложению (фенолы, цианиды, ПАВ);

загрязняющие вещества, имеющие ярко выраженную токсичность, способные накапливаться в живых организмах и переходить от одного трофического уровня к другому (тяжелые металлы, пестициды, органические растворители);

патогенные организмы, вирусы, микробы и т.д.

. Нормирование загрязнений гидросферы

Особенности нормирования химических веществ в водной среде обусловлены несколькими факторами.

. С гигиенических позиций оценивается уровень загрязнения воды, предназначенной для хозяйственно-питьевого и культурно-бытового назначения (спорт, купание, отдых).

. Гигиенические нормативы качества воды распространяются не на весь водный объект, а только на пункты водопользования.

.Вода используется населением не только для питья, приготовления пищи, личной гигиены, но и для хозяйственно-бытовых целей. В связи с этим при нормировании учитывается как непосредственное влияние химических загрязнителей на организм, так и их влияние на органолептические свойства и процессы самоочищения воды водоёмов.

. Для всех водных объектов, используемых населением, устанавливаются единые гигиенические нормативы (ПДК, ОДУ).

В отличие от атмосферы, которая может рассматриваться как единое целое, водные бассейны более изолированы. В связи с этим по характеру использования водоемы подразделяют на две категории:

питьевого и культурно-бытового назначения;

рыбохозяйственного назначения.

Основным нормирующим показателем, характеризующим качество воды, как и атмосферы, является ПДК.

Предельно допустимая концентрация вредного вещества в воде водоема (ПДКв, мг/л) - это такая его концентрация, которая не оказывает негативного влияния на организм человека при различных видах употребления воды.

Нормами установлены ПДК более 2000 вредных веществ в водоемах питьевого и культурно-бытового назначения и более 1130 веществ в водоемах рыбохозяйственного назначения. Это две самостоятельные, биологически несходные системы нормативов, так как человек слишком удален на биологической лестнице от форм водной биоты.

Кроме этого, при выделении зон ЧЭС и экологического бедствия предложено использовать суммарный показатель химического загрязнения (ПХЗ). Его расчет ведут по десяти соединениям с максимальным превышением ПДК.

Концентрация вредных веществ в водоемах, как и в атмосфере, зависит от их количества, выбрасываемого всеми источниками загрязнения. Чтобы эти концентрации не превышали ПДК, для каждого источника загрязнения устанавливают величину ПДС - массы вещества, максимально возможной к отведению в единицу времени в данном пункте объекта при условии сохранения качества воды в контрольном пункте (г/м3).

Санитарные нормы и правила охраны поверхностных вод от загрязнения запрещают сбрасывать сточные воды в водоемы, если они:

могут быть устранены путем усовершенствования технологии, максимального использования в системах оборотного водоснабжения или устройства бессточных производств;

включают ценные отходы, которые можно утилизировать;

содержат исходное сырье, реагенты, полу- и конечные продукты в количествах сверх установленных нормами технологических потерь;

могут быть использованы для орошения при соблюдении санитарных требований.

Имеется несколько путей уменьшения количества загрязненных сточных вод, среди них следующие:

) разработка и внедрение безводных технологических процессов;

) усовершенствование существующих процессов;

) разработка и внедрение совершенного оборудования;

) внедрение аппаратов воздушного охлаждения;

) повторное использование очищенных сточных вод в оборотных и замкнутых системах.

. Методы очистки воды

Методы очистки сточных вод обычно классифицируют по характеру основных процессов, на которых они основаны. По этому признаку их подразделяют на механические, химические, физико-химические и биологические или биохимические.

. Использование физических методов приводит лишь к изменению формы, размеров, агрегатного состояния и других физических свойств. При этом в последних не исчезают прежние и не возникают какие-либо новые вещества. Физические методы обеспечивают выделение из сточных вод до 95-99% взвешенных веществ и снижают органические загрязнения на 20-25%. Их разделяют на методы процеживания, отстаивания, центрифугирования и фильтрации. В качестве основного оборудования в них применяют различные модификации решеток, сит, отстойников, центрифуг, гидроциклонов и фильтров.

. Химические методы применяют для удаления из сточных вод растворимых загрязнителей, используя различные реагенты. При взаимодействии с примесями последние образуют безвредные соединения или малорастворимые осадки, в состав которых переходят элементы вредных веществ. Таким образом, изменяются не только физические, но и химические свойства подвергаемых очистке систем. Основными методами химической очистки являются нейтрализация, окисление и восстановление.

Ι. Нейтрализация.

Сточные воды, содержащие минеральные кислоты или щелочи, перед сбросом их в водоемы или перед использованием в технологических процессах нейтрализуют. Практически нейтральными считаются воды, имеющие рН=6,5-8,5. Нейтрализацию можно проводить различным путем: смешением кислых и щелочных сточных вод, добавлением реагентов, фильтрованием кислых вод через нейтрализующие материалы и абсорбцией кислых газов щелочными водами. Выбор метода нейтрализации зависит от объема и концентрации сточных вод, наличия и стоимости реагентов.

1. Нейтрализация смешением. Этот метод применяют, если на предприятии имеются кислые и щелочные воды, не загрязненные другими компонентами. Кислые и щелочные воды смешивают в специальной емкости с мешалкой и без неё. В последнем случае перемешивание ведут воздухом.

. Нейтрализация путем добавления реагентов. Для нейтрализации кислых вод могут быть использованы: NaOH, КОН, Na2CO3, СаСО3, цемент и гидроксид кальция (известковое молоко) с содержанием активной извести Са(ОН)2 5-10%. Реагенты выбирают в зависимости от состава и концентрации кислой сточной воды. При этом учитывают, будет ли в процессе образовываться осадок или нет.

3. Нейтрализация фильтрованием кислых вод через нейтрализующие материалы. В этом случае для нейтрализации кислых вод проводят фильтрование их через слой магнезита, доломита, известняка, твердых отходов (шлак, зола). Процесс ведут в фильтрах-нейтрализаторах, которые могут быть горизонтальными или вертикальными.

. Нейтрализация кислыми газами. Для нейтрализации щелочных сточных вод используют отходящие газы, содержащие СО2, SO2, NO2, N2O3. Применение кислых газов позволяет не только нейтрализовать сточные воды, но и одновременно производить высокоэффективную очистку самих газов от вредных компонентов.

ΙΙ. Окисление.

Для очистки сточных вод используют следующие окислители: газообразный и сжиженный хлор, диоксид хлора, хлорат кальция, пероксид водорода, кислород воздуха, озон и др. В процессе окисления токсичные загрязнения, содержащиеся в сточных водах, в результате химических реакций переходят в менее токсичные, которые удаляют из воды.

1. Окисление хлором. Хлор и вещества, содержащие «активный» хлор, являются наиболее распространенными окислителями. Их используют для очистки сточных вод от сероводорода, гидросульфида, фенолов, цианидов и др.

2. Окисление пероксидом водорода. Пероксид водорода является бесцветной жидкостью, в любых соотношениях смешивается с водой. Он может быть использован для окисления нитритов, цианидов, серо- и железосодержащих отходов и активных красителей.

В кислой среде пероксид водорода переводит соли двухвалентного железа в соли трехвалентного, азотистую кислоту - в азотную, сульфиды - в сульфаты. Цианиды в цианаты окисляются в щелочной среде (рН=9-12).

3. Окисление кислородом воздуха. Кислород воздуха используют при очистке воды от железа для окисления соединений двухвалентного железа в трехвалентное с последующим отделением от воды гидроксида железа. Образующийся гидроксид железа отстаивают в контактном резервуаре, а затем отфильтровывают.

Кислородом воздуха окисляют также сульфидные стоки целлюлозных, нефтеперерабатывающих и нефтехимических заводов.

При введении озона в воду идут два основных процесса - окисление и дезинфекция. Кроме того, происходит значительное обогащение воды растворенным кислородом.

Процесс очистки сточных вод значительно сокращается при совместном использовании ультразвука и озона, ультрафиолетового облучения и озона. Так, ультрафиолетовое облучение ускоряет окисление в 102-104 раз.

ΙΙΙ. Очистка восстановлением. Методы восстановительной очистки сточных вод применяют в тех случаях, когда они содержат легко восстанавливаемые вещества. Эти методы широко используют для удаления из сточных вод соединений ртути, хрома, мышьяка.

а) в процессе очистки неорганические соединения ртути восстанавливают до металлической ртути, которую отделяют от воды отстаиванием или фильтрованием. Органические соединения ртути сначала окисляют с разрушением соединения, затем катионы ртути восстанавливают до металлической ртути. Для восстановления ртути и ее соединений предложено применять сульфид железа, железный порошок, сероводород и др.

б) наиболее распространенным способом удаления мышьяка из сточных вод является осаждение его в виде труднорастворимых соединений. При больших концентрациях мышьяка (до 110 г/л) метод очистки основан на восстановлении мышьяковой кислоты до мышьяковистой диоксидом серы.

в) метод очистки сточных вод от веществ, содержащих шестивалентный хром, основан на восстановлении его до трехвалентного с последующим осаждением в виде гидроксида в щелочной среде. В качестве восстановителей используются активный уголь, сульфат железа, водород, диоксид серы.

3. Физико-химические методы основаны на явлениях химического характера, получающих развитие под влиянием изменения термодинамических параметров (давление, объем, температура), эти способы очистки базируются на совокупности явлений, пограничных между физическими и химическими. Физико-химические методы пригодны для осаждения токсичных металлов и их солей, удаления масел и суспендированных веществ, осветления стоков. Выбор конкретного способа определяется свойствами и количеством стоков (коагуляция и флокуляция).

4. Биохимические способы очистки в настоящее время нашли широкое применение для очистки как хозяйственно-бытовых, так и промышленных сточных вод от многих растворенных органических и неорганических веществ, которые используются микроорганизмами в качестве питательных веществ и источников энергии и при этом подвергаются окислению с образованием воды и СО2 при аэробной и восстановительным процессам с образованием метана при анаэробной очистке. В процессе питания микроорганизмов происходит прирост их массы. В сообщество микроорганизмов входит множество различных бактерий, простейших и ряд более высокоорганизованных микроорганизмов (микроводорослей, грибов и дрожжей). Основная роль в сообществе принадлежит бактериям, число родов которых может достигать 5-10, а видов - несколько десятков и даже сотен. Масса микроорганизмов создает так называемый активный ил с концентрацией до 2-5 г/л сточных вод.

Возможность биохимического окисления определяется по отношению, называемому биохимическим показателем. (БПКполн/ХПК)•100,%.

БПКПОЛН - потребление кислорода до начала процессов нитрификации, т.е. окисления нитритов до нитратов.

ХПК - величина, характеризующая общее количество органических и неорганических восстановителей, реагирующих со всеми окислителями, находящимися в сточной воде. Если это отношение равно 50%, то вещества будут поддаваться биохимическому окислению.

Известны два вида процессов с участием микроорганизмов: окислительные (аэробные) в присутствии кислорода, наиболее распространенные в очистке сточных вод. Аэробный метод очистки основан на использовании аэробных групп микроорганизмов, для жизнедеятельности которых необходим постоянный приток кислорода и температура 20-40 градусов. При аэробном методе очистки микроорганизмы культивируются в виде активного ила или биопленки.

Восстановительные (анаэробные) методы протекают в отсутствие кислорода и используются для сбраживания осадков.

Аэробные процессы биохимической очистки могут протекать в природных условиях и в искусственных сооружениях.

. В естественных условиях очистка происходит на полях орошения, полях фильтрации и биологических прудах.

а) Поля орошения. Это специально подготовленные земельные участки, используемые одновременно для очищения сточных вод и агрокультурных целей. Очистка сточных вод в этих условиях идет под действием почвенной микрофлоры, солнца, воздуха и под влиянием жизнедеятельности растений.

В процессе биологической очистки сточные воды проходят через фильтрующий слой почвы, в котором задерживаются взвешенные и коллоидные частицы, образуя в порах грунта пленку. Затем образовавшаяся пленка адсорбирует коллоидные частицы и растворенные в сточных водах вещества. Проникающий из воздуха в поры кислород окисляет органические вещества, превращая их в минеральные соединения.

Серьезной проблемой использования полей орошения может явиться загрязнение почвы и заражение растений патогенными бактериями и яйцами гельминтов.

б) Если на полях не выращиваются сельскохозяйственные культуры и они предназначены только для биологической очистки сточных вод, то их называют полями фильтрации. Недостатки - большая площадь, возможность загрязнения подземных вод и воздуха газообразные продуктами разложения /запах - на 200 м/.

в) Биологические пруды - представляют собой каскад прудов, состоящий из 3-5 ступеней, через которые с небольшой скоростью протекает сточная вода. Пруды имеют небольшую глубину (0,5-1 м), хорошо прогреваются солнцем и заселены водными организмами. Бактерии используют для окисления загрязнений кислород, выделяемый водорослями в процессе фотосинтеза, а также кислород из воздуха. Водоросли, в свою очередь, потребляют СО2, фосфаты и аммонийный азот, выделяемые при разложении органических веществ.

К недостаткам этих сооружений следует отнести низкую окислительную способность, сезонность работы, потребность в больших территориях, затрудненность очистки, трудно подобрать состав микроорганизмов, поддерживать их концентрацию на нужном уровне, микроорганизмы часто гибнут.

2. Искусственными сооружениями являются аэротенки и биофильтры при аэробной очистке и метатенки при анаэробной. В искусственных сооружениях процессы очистки протекают с большей скоростью, чем в естественных условиях.

1. Очистка в биофильтрах. Биофильтры - сооружения, в корпусе которых размещается кусковая насадка (загрузка) и предусмотрены распределительные устройства для сточной воды и воздуха. В биофильтрах сточная вода фильтруется через слой загрузки, покрытый пленкой из микроорганизмов (биопленкой). Биопленка представляет собой слизистые образования толщиной от 2 мм и более. Биопленка состоит из бактерий, грибов, дрожжей и простейших.

Микроорганизмы биопленки окисляют органические вещества, используя их как источники питания и энергии. Таким образом, из сточной воды удаляются органические вещества, а масса активной биопленки увеличивается. Отработанная (омертвевшая) биопленка смывается протекающей сточной водой и выносится из биофильтра. В качестве загрузки используют различные материалы с высокой пористостью, малой плотностью и большой удельной поверхностью: щебень, гравий и шлак.

2. Очистка в аэротенках. Аэротенки представляют собой резервуары, в которых сточная вода смешивается с комплексом развивающихся микроорганизмов, образующих легко оседающие хлопья - активный ил, и насыщается воздухом или кислородом с помощью различных систем аэрации. Аэрация обеспечивает эффективное смешение сточных вод с активным илом, подачу в иловую смесь кислорода и поддержание ила во взвешенном состоянии. В процессе окисления органического вещества увеличивается биомасса микроорганизмов и образуется избыточный активный ил. Процесс очистки в аэротенке идет по мере протекания через него аэрированной смеси сточной воды и активного ила. Аэрация необходима для насыщения воды кислородом и поддержания ила во взвешенном состоянии.

3. Анаэробные методы обезвреживания используют для сбраживания осадков, образующихся при биохимической очистке производственных сточных вод. Для очистки сточных вод используют метановое брожение, которое состоит из двух фаз: кислой и щелочной. В кислой фазе из сложных органических веществ образуются низшие жирные кислоты, спирты, аминокислоты, аммиак, сероводород, диоксид углерода и водород. Из этих промежуточных продуктов в щелочной фазе образуются метан и диоксид углерода. Процесс брожения проводят в метантенках - герметически закрытых резервуарах, оборудованных приспособлениями для ввода несброженного и отвода сброженного осадка.

К недостаткам относится медленный рост анаэробных, особенно метановых, бактерий.

Тема 5. Почвы и земельные ресурсы

. Источники загрязнения литосферы

Площадь земельных ресурсов мира составляет 129 млн. км2, или 86,5% суши. Из них пахотно-пригодными являются 25-35 млн. км2, из которых используются около 15 млн.км2. Сенокосы и пастбища занимают 37,4 млн. км2.

Существует множество классификаций источников загрязнения почвенного покрова. Наиболее распространена:

. Природные процессы, неблагоприятное воздействие которых на почвенный покров предотвратить нельзя. Это землетрясения, извержения вулканов и оплывание почв на склонах.

. Природные процессы, которые человек иногда может в какой-то мере предотвратить или уменьшить их неблагоприятное воздействие на почву, например, наводнения и сопровождающийся при этом смыв пахотного слоя и занос плодородных почв песком и галькой.

. Природные процессы, интенсивное проявление которых во многом обусловлено неразумной деятельностью человека. Это в первую очередь интенсивный смыв и размыв почвы поверхностным стоком временных водных потоков и погребение плодородных почв продуктами эрозии - менее плодородными наносами, занос почв подвижными песками, вторичное засоление почв, связанное с избыточным поливом.

. Явления, целиком связанные с хозяйственной деятельностью человека. Это загрязнение почв токсическими выбросами, поступающими в атмосферу при работе промышленных предприятий и транспорта. Снижение плодородия от неправильного применения удобрений и пестицидов. Разрушение почвенного покрова при разработке месторождений полезных ископаемых. Пересушивание почвы при неправильном проведении осушительных мелиораций. Необоснованное отчуждение ценных сельскохозяйственных земель для использования в других отраслях народного хозяйства.

Основными антропогенными источниками загрязнения почвы являются:

теплоэнергетика. Помимо образования массы шлаков при сжигании каменного угля с теплоэнергетикой связано выделение в атмосферу сажи, несгоревших частиц, оксидов серы, в конце концов оказывающихся в почве.

транспорт. При работе двигателей внутреннего сгорания интенсивно выделяются оксиды азота, свинец, углеводороды и другие вещества, оседающие на поверхности почвы или поглощаемые растениями.

жилищно-коммунальное хозяйство. Почва может загрязняться бытовым мусором, пищевыми отходами, фекалиями, строительным мусором, пришедшими в негодность предметами домашнего обихода.

сельское хозяйство. Удобрения, ядохимикаты, применяемые в сельском и лесном хозяйстве для защиты растений от вредителей, болезней и сорняков. Сюда также относятся отходы, отбросы и экскременты животноводческих хозяйств.

. Эрозионные процессы

Эрозионные процессы - это явления, ведущие к разрушению горных пород и почв, равным образом обусловливаются как природными факторами геологического характера, ведущими к изменению поверхности Земли, так и антропогенными нагрузками на окружающую среду.

Известно, что земная кора находится под влиянием внутренних и внешних сил. Первые приводят к образованию крупных форм рельефа - гор, вулканов, плоскогорий, глубоких впадин, в результате поднятия и опускания земной коры, вулканической деятельности. Вторые вызывают разрушение горных пород и образование осадочных материалов вторичного происхождения.

Все факторы внешнего воздействия проявляются либо на границе атмосферы и литосферы, либо гидросферы и литосферы.

. В первом случае наиболее разрушительными являются колебания температуры, атмосферные осадки, замерзание воды, ветер, объединяемые в группу атмосферных агентов. Их совокупность обусловливает выветривание горных пород. В зависимости от того, какие именно атмосферные агенты являются основными, каков при этом характер изменения горных пород, различают физическое, химическое и биологическое выветривание.

а) Физическое выветривание разрушает горные породы без изменения их минерального состава. Оно происходит за счет быстрой смены температур, действия льда, образующегося при замерзании воды, и ветра.

б) Химическое выветривание имеет место при взаимодействии минералов и пород с водой и содержащимися в них веществами, с диоксидом углерода и кислородом воздуха. При этом происходит растворение минералов и изменение химического состава пород.

в) Биологическое выветривание развивается под воздействием растительных и животных организмов, микробов, продуктов жизнедеятельности живых существ и разложения последних после отмирания.

. Во втором случае разрушение осуществляется движущимися потоками воды (водная эрозия). В данном виде эрозии основной разрушительной силой являются моря, потоки дождевых, талых и речных вод, грязекаменные потоки и ледники.

Водную эрозию подразделяют на горизонтальную (плоскостную) и вертикальную (глубинную).

а) Горизонтальная эрозия проявляется в том, что выпадающие осадки или талые воды, стекая по уклону, захватывают и сносят вниз верхний слой почвы.

б) При вертикальной эрозии образуются овраги - вытянутые и разветвленные углубления, врезанные в рыхлую породу. Их образованию способствуют пересеченный рельеф местности, ливневый характер выпадающих осадков, быстрое снеготаяние, наличие легко размываемых пород.

Для борьбы с эрозией почв необходим комплекс мер:

землеустроительных (распределение угодий по степени их устойчивости к эрозионным процессам);

агротехнических (почвозащитные севообороты, контурная система выращивания сельскохозяйственных культур, при которой задерживается сток, химические средства борьбы и т. д.);

лесомелиоративных (полезащитные и водорегулирующие лесные полосы, лесные насаждения на оврагах, балках и т. д.);

гидротехнических (каскадные пруды и т. д.).

При этом учитывают, что гидротехнические мероприятия останавливают развитие эрозии на определенном участке сразу же после их устройства, агротехнические - через несколько лет, а лесомелиоративные - через 10-20 лет после их внедрения.

Для почв, подверженных сильной эрозии, необходим весь комплекс противоэрозионных мер:

полосное земледелие, т.е. такая организация территории, при которой прямолинейные контуры полей чередуются с полезащитными лесными полосами;

почвозащитные севообороты (для защиты почв от дефляции);

облесение оврагов;

бесплужные системы обработки почв (применение культиваторов, плоскорезов и т. п.);

различные гидротехнические мероприятия (устройство каналов, валов, канав, террас, сооружение водотоков, лотков и др.) и другие меры.

3. Факторы деградации почв

Основные факторы деградации почв, вызывающие ее эрозию, - сельскохозяйственные и промышленные.

К сельскохозяйственным относятся:

уменьшение площади лесов, что приводит к резкому повышению скорости смывания почвенного слоя;

вторичное засоление почв, которое заключается в накоплении в верхних слоях почвы легкорастворимых солей (соды, хлоридов, сульфатов) в результате неумеренного полива земель и нарушения водного баланса фильтрационными водами оросительных систем;

опустынивание. Оно приводит к потере экосистемой сплошного растительного покрова и невозможности его восстановления без участия человека. Этот процесс протекает под влиянием таких факторов, как вырубка лесов, неумеренная эксплуатация пастбищ и нерациональное использование водных ресурсов при орошении;

Особо опасны гербициды, относящиеся к группе стойких хлорорганических соединений (ДДТ, ГХБ, ГХЦБ и др.). Хлорорганические пестициды, будучи опасны сами по себе, зачастую содержат трудно выделяемые из них и близкие им по составу диоксины, поражающее действие которых многократно выше.

Промышленные факторы обусловлены:

разработкой полезных ископаемых. Наибольший ущерб наносит их открытая добыча. Она связана с отчуждением земельных площадей, которые в результате проведения горных работ становятся непригодными для использования в народном хозяйстве;

загрязнением почв токсикантами;

наличием водохранилищ, которые изменяют режим грунтовых вод, затопляют большие участки плодородных земель, приводят к вторичному засолению почв;

кислотными дождями. Атмосферные осадки, имеющие рН менее 5,6, приводят к закислению почв. При снижении рН менее 5,0 вырождение плодородия начинает резко прогрессировать, а при рН =3,0 почвы становятся практически потерянными для сельского хозяйства.

Загрязнение почв тормозит ход почвообразовательных процессов, резко снижает урожайность, вызывает накопление вредных веществ в растениях. Из последних они прямо или опосредствованно (через продукты питания) попадают в организм человека. Ослабляется также самоочищающая способность почв, что повышает опасность заболеваний, вызываемых болезнетворными бактериями. Например, в обычных условиях возбудители дизентерии и тифа сохраняются 2-3 сут. В ослабленных загрязнителями почвах возбудители дизентерии опасны несколько месяцев, а тифа- до полутора лет.

. Нормирование загрязнений в почвенном покрове

Основные положения гигиенического нормирования содержания вредных веществ в почве заключаются в следующем.

. Не всякое поступление химических веществ в почву следует рассматривать как опасное для здоровья человека и окружающей среды.

. Безопасность поступления химических веществ в почву определяется недопустимостью превышения адаптационной возможности самых чувствительных групп населения или порога самоочищающей способности почвы.

. Гигиенические нормативы устанавливаются с учётом лимитирующего показателя вредности: общесанитарного, миграционного водного, воздушного, органолептического, фитоаккумуляционного и токсикологического.

. Если учитывать чрезвычайную изменчивость климатогеографических условий формирования почв, то экспериментально обоснованную ПДК можно рассматривать как эталонную величину отсчёта, используемую для оценки опасности загрязнения почвы в конкретных почвенно-климатических условиях.

Нормирование химического загрязнения почв устанавливается по (ПДКп). По своей величине ПДКп отличаются от принятых ПДК для воды и воздуха (в большую сторону). Это объясняется тем, что непосредственное поступление вредных веществ в организм из почвы происходит лишь в исключительных случаях и незначительных количествах, в основном через контактирующие с почвой среды (вода, воздух, растения).

ПДКп - это концентрация химического вещества (мг/кг) в пахотном слое почвы, которая не должна вызывать прямого или косвенного отрицательного влияния на соприкасающиеся с почвой среды и здоровье человека, а также на самоочищающую способность почвы. ПДК учитывает шесть лимитирующих показателей.

. Органолептический показатель - минимальное содержание вещества в почве, вызывающее достоверные отрицательные изменения в пищевой ценности растительной пищи.

. Общесанитарный, показатель характеризует самоочищающую способность почвы. Он представляет собой максимальную концентрацию токсиканта в почве, которая за 7 суток не приводит к сокращению на 50% и более численности микроорганизмов.

. Токсикологический показатель - максимальная не действующая на организм человека при непосредственном контакте доза загрязнителя в почве.

.Остальные лимитирующие показатели - это количество токсикантов в почве, при которых их концентрация соответственно в сельскохозяйственных растениях, грунтовых водах и воздухе не превышает ПДК для пищевых продуктов, воды водоемов и атмосферы.

При выявлении зон ЧЭС и экологического бедствия загрязнение почв оценивается по суммарному показателю Zc химического загрязнения. Он определяется как сумма коэффициентов концентраций отдельных компонентов загрязнений по формуле

=Kсl+Кс2+…+Kcn-(n-1)

где n - число определяемых элементов;

Кс - коэффициент концентрации i-го загрязнителя, равный частному от деления его массовых долей в загрязненной и «фоновой» почвах.

. Почвозащитные мероприятия на сельскохозяйственных землях

В условиях интенсификации производства охрана земной поверхности и её рациональное использование осуществляются с помощью следующих мероприятий:

запрещение использования для строительства пашни и садов;

разработка и внедрение комплексов противоэрозионных мероприятий;

сокращение использования земельного фонда для промышленных целей в процессе проектирования и строительства;

переход на биологические методы (вместо пестицидов) борьбы с сорняками, вредителями и болезнями сельскохозяйственных культур;

устранение загрязнения почвы промышленными предприятиями, рекультивация нарушенных горными и строительными работами земель.

Рекультивация - совокупность работ по приведению почвы в пригодное для использования в народном хозяйстве состояние. Рекультивация осуществляется в два этапа:

. Механическая рекультивация состоит в подготовке территории после окончания разработки месторождения или строительства путём планировки отвалов, засыпки выемок, придания откосам удобной формы, насыпания плодородной почвы, проведения мелиоративных работ и создания подъездных путей.

. Биологическая рекультивация заключается в восстановлении первоначального плодородия земель путём их озеленения. Основные методы биологической рекультивации:

внесение повышенных доз органических и минеральных удобрений, орошение;

посадка многолетних бобовых культур;

посадка улучшающих почву деревьев и кустарников, характерных для данной почвенно-климатической зоны.

. Природные ресурсы и их классификация

Природные ресурсы - это различные природные объекты и явления, которые используются или могут использоваться в социально-хозяйственной деятельности человека. В основу их классификации положены четыре признака.

Первый - по источникам происхождения: биологические, минеральные и энергетические. Биологические ресурсы (растения, животные) являются возобновляемыми ресурсами, если деятельность человека не лишила их необходимых условий для размножения и воспроизводства численности. Большинство минеральных ресурсов относится к невозобновляемым. Это - руды, глины, пески, нефть, газ и редкоземельные элементы.

Второй - по использованию в качестве производственных ресурсов: земельный фонд, лесной фонд, водные ресурсы, гидроэнергетические ресурсы, ресурсы животного мира, полезные ископаемые.

Третий признак - по степени истощаемости ресурсов:

неисчерпаемые - атмосферный воздух, осадки, вода, солнечная радиация, энергия ветра, энергия морских приливов и отливов, энергия земных недр;

исчерпаемые - расходуются при использовании человеком и подразделяются на возобновляемые (животный и растительный мир), относительно возобновляемые (деревья большого возраста, плодородие почв, некоторое минеральное сырье) и не возобновляемые (полезные ископаемые).

По четвертому признаку природные ресурсы можно различать также по степени возместимости или заменяемости:

заменимые, например, могут быть открыты новые месторождения полезных ископаемых, найдены новые виды растений, один источник энергии может быть заменён другим;

Основная масса минерально-сырьевых ресурсов, содержащихся в земной коре, составляет 0,4% от общей массы Земли. Бытующее мнение об опасности минерально-сырьевого кризиса сильно преувеличено, так как человечество в перспективе может эксплуатировать неперспективные на сегодняшний день отдельные месторождения полезных ископаемых, например Мировой океан - богатейшая кладовая минерального сырья, где содержится более 80 элементов периодической системы Менделеева.

7. Ресурсы полезных ископаемых в недрах

Под недрами понимают верхнюю часть земной коры, в пределах которой осуществляется добыча полезных ископаемых.

Полезные ископаемые - горная порода, непосредственно используемая в народном хозяйстве, и природные минеральные образования, из которых могут быть извлечены минералы. Природными ресурсами для основных видов продукции горных предприятий служат полезные ископаемые, которые делятся на металлические, неметаллические, горючие. Классификация полезных ископаемых:

топливно-энергетические - нефть, газ, уголь, торф, горючие сланцы т.д.;

рудные ресурсы - железная и марганцевая руда, хромиты, руды благородных металлов, медные, свинцово-цинковые и т.д. Руда - горная порода, содержащая металлы и их соединения или неметаллические минералы в количестве и виде, пригодном для их извлечения при современном состоянии техники.

природные строительные материалы и нерудные полезные ископаемые (известняк, глины, песок, мрамор, гранит, яшма, агат, алмазы, гранат и т.д.);

горно-химическое сырьё - апатиты, фосфориты, поваренная, калийная соль, сера и т.д.;

гидроминеральные ресурсы - подземные пресные и минерализованные воды;

минеральные ресурсы океана - рудоносные жилы, железомарганцевые конкреции на глубинах 3-6 км;

минеральные ресурсы морской воды - железо, свинец, уран, золото и т.д.

Потребителями полезных ископаемых являются железорудная, угольная промышленности, цветная металлургия, промышленность горно-химического сырья и строительных материалов. Большинство добываемых полезных ископаемых в своём природном виде не соответствует требованиям потребителей в отношении качества. Соответствующее качество полезные ископаемые приобретают после обработки на горных предприятиях.

. Основные положения охраны недр

. Полное и комплексное геологическое изучение недр.

. Соблюдение установленного порядка предоставления в пользование недр, исключая самовольное.

. Полное извлечение из недр и рациональное использование запасов основных и совместно залегающих полезных ископаемых и содержащихся в них компонентов. Серьёзный ущерб наносит государству некомплексная переработка уже добытого минерального сырья, что приводит к потере ценных компонентов (ценные непрофильные компоненты сырья переводятся в отходы и теряются). Большой ущерб наносится стремлением предприятий к выборочной отработке лучших участков месторождений, приводящей к накоплению запасов полезных ископаемых худшего качества и потере их промышленного значения.

. Охрана месторождений полезных ископаемых от затопления, обводнения, пожаров и других неблагоприятных воздействий, снижающих качество полезных ископаемых и промышленную ценность месторождений или осложняющих их разработку.

. Запрещение необоснованной и самовольной застройки площадей залегания полезных ископаемых и соблюдение установленного порядка использования этих площадей для других целей.

. Исключение вредного влияния работ, связанных с использованием недр, на сохранность эксплуатируемых и находящихся на консервации горных выработок, буровых скважин и подземных сооружений.

. Запрещение загрязнения недр при подземном хранении нефти, газа и иных веществ, захоронении вредных веществ и отходов производства, а также при сборе сточных вод.

. Разработка экономического механизма, стимулирующего рациональное использование недр (платежи, налоги, льготы и т.д.).

Для всех предприятий и организаций, осуществляющих добычу полезных ископаемых на территории РФ, её континентального шельфа и экономической зоны утверждены и введены специальные платежи. Указанные платежи не взимаются:

с реализованных компонентов, попутно извлечённых при добыче полезных ископаемых;

с продукции, получаемой при переработке вскрышных пород, отходов добычного, обогатительного и химико-металлургического циклов;

при добыче нефти путём применения термических, физико-химических и микробиологических методов воздействия на продуктивные пласты.

Эти платежи могут взиматься в форме денежных платежей, части объёма добытого минерального сырья или иной производимой пользователем продукции, выполнения работ или предоставления услуг, зачёта сумм предстоящих платежей в бюджет России.

Похожие работы на - Экология и окружающая природная среда

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!